9 research outputs found
Effect of Garcinia mangostana on inflammation caused by Propionibacterium acnes
Abstract The present study was aimed to investigate the activity of Thai medicinal plants on inflammation caused by Propionibacterium acnes in terms of free radical scavenging and cytokine reducing properties. P. acnes have been recognized as pus-forming bacteria triggering an inflammation in acne. Antioxidant activity was determined by DPPH scavenging and NBT reduction assay. The result showed that Garcinia mangostana possessed the most significant antioxidant activity and reduced reactive oxygen species production. Houttuynia cordata, Eupatorium odoratum, and Senna alata had a moderate antioxidant effect. In addition, Garcinia mangostana extracts could reduce the TNF-α production as determined by ELISA. Garcinia mangostana was highly effective in scavenging free radicals and was able to suppress the production of pro-inflammatory cytokines. This study has identified the promising source of anti-inflammatory agent which could be useful in treatment of acne vulgaris
The Inhibitory Potential of Thai Mango Seed Kernel Extract against Methicillin-Resistant Staphylococcus Aureus
Plant extracts are a valuable source of novel antibacterial compounds to combat pathogenic isolates of methicillin-resistant Staphylococcus aureus (MRSA), a global nosocomial infection. In this study, the alcoholic extract from Thai mango (Mangifera indica L. cv. ‘Fahlun’) seed kernel extract (MSKE) and its phenolic principles (gallic acid, methyl gallate and pentagalloylglucopyranose) demonstrated potent in vitro antibacterial activity against Staphylococcus aureus and 19 clinical MRSA isolates in studies of disc diffusion, broth microdilution and time-kill assays. Electron microscopy studies using scanning electron microscopy and transmission electron microscopy revealed impaired cell division and ultra-structural changes in bacterial cell morphology, including the thickening of cell walls, of microorganisms treated with MSKE; these damaging effects were increased with increasing concentrations of MSKE. MSKE and its phenolic principles enhanced and intensified the antibacterial activity of penicillin G against 19 clinical MRSA isolates by lowering the minimum inhibitory concentration by at least 5-fold. The major phenolic principle, pentagalloylglucopyranose, was demonstrated to be the major contributor to the antibacterial activity of MSKE. These results suggest that MSKE may potentially be useful as an alternative therapeutic agent or an adjunctive therapy along with penicillin G in the treatment of MRSA infections
Prevalence and genotypic relatedness of carbapenem resistance among multidrug-resistant <it>P. aeruginosa</it> in tertiary hospitals across Thailand
Abstract Background Increased infection caused by multidrug resistant (MDR) Pseudomonas aeruginosa has raised awareness of the resistance situation worldwide. Carbapenem resistance among MDR (CR-MDR) P. aeruginosa has become a serious life-threatening problem due to the limited therapeutic options. Therefore, the objectives of this study were to determine the prevalence, the antibiotic susceptibility patterns and the relatedness of CR-MDR P. aeruginosa in tertiary hospitals across Thailand. Methods MDR P. aeruginosa from eight tertiary hospitals across Thailand were collected from 2007–2009. Susceptibility of P. aeruginosa clinical isolates was determined according to the Clinical and Laboratory Standards Institute guideline. Selected CR-MDR P. aeruginosa isolates were genetically analyzed by pulsed-field gel electrophoresis. Results About 261 clinical isolates were identified as MDR P. aeruginosa and approximately 71.65% were found to be CR-MDR P. aeruginosa. The result showed that the meropenem resistance rate was the highest reaching over 50% in every hospitals. Additionally, the type of hospitals was a major factor affecting the resistance rate, as demonstrated by significantly higher CR-MDR rates among university and regional hospitals. The fingerprinting map identified 107 clones with at least 95% similarity. Only 4 clones were detected in more than one hospital. Conclusions Although the antibiotic resistance rate was high, the spreading of CR-MDR was found locally. Specific strains of CR-MDR did not commonly spread from one hospital to another. Importantly, clonal dissemination ratio indicated limited intra-hospital transmission in Thailand.</p
Prevalence of OXA-Type β-Lactamase Genes among Carbapenem-Resistant Acinetobacter baumannii Clinical Isolates in Thailand
Carbapenem-resistant Acinetobacter baumannii (CRAB) is a critical health concern for the treatment of infectious diseases. The aim of this study was to investigate the molecular epidemiology of CRAB emphasizing the presence of oxacillinase (OXA)-type β-lactamase-encoding genes, one of the most important carbapenem resistance mechanisms. In this study, a total of 183 non-repetitive CRAB isolates collected from 11 tertiary care hospitals across Thailand were investigated. As a result, the blaoxa-51-like gene, an intrinsic enzyme marker, was detected in all clinical isolates. The blaoxa-23-like gene was presented in the majority of isolates (68.31%). In contrast, the prevalence rates of blaoxa-40/24-like and blaoxa-58-like gene occurrences in CRAB isolates were only 4.92% and 1.09%, respectively. All isolates were resistant to carbapenems, with 100% resistance to imipenem, followed by meropenem (98.91%) and doripenem (94.54%). Most isolates showed high resistance rates to ciprofloxacin (97.81%), ceftazidime (96.72%), gentamicin (91.26%), and amikacin (80.87%). Interestingly, colistin was found to be a potential drug of choice due to the high susceptibility of the tested isolates to this antimicrobial (87.98%). Most CRAB isolates in Thailand were of ST2 lineage, but some belonged to ST25, ST98, ST129, ST164, ST215, ST338, and ST745. Further studies to monitor the spread of carbapenem-resistant OXA-type β-lactamase genes from A. baumannii in hospital settings are warranted