58 research outputs found

    Anomalous Heat Conduction and Anomalous Diffusion in Low Dimensional Nanoscale Systems

    Full text link
    Thermal transport is an important energy transfer process in nature. Phonon is the major energy carrier for heat in semiconductor and dielectric materials. In analogy to Ohm's law for electrical conductivity, Fourier's law is a fundamental rule of heat transfer in solids. It states that the thermal conductivity is independent of sample scale and geometry. Although Fourier's law has received great success in describing macroscopic thermal transport in the past two hundreds years, its validity in low dimensional systems is still an open question. Here we give a brief review of the recent developments in experimental, theoretical and numerical studies of heat transport in low dimensional systems, include lattice models, nanowires, nanotubes and graphenes. We will demonstrate that the phonon transports in low dimensional systems super-diffusively, which leads to a size dependent thermal conductivity. In other words, Fourier's law is breakdown in low dimensional structures

    Effect of Covalent Functionalisation on Thermal Transport Across Graphene-Polymer Interfaces

    Get PDF
    This paper is concerned with the interfacial thermal resistance for polymer composites reinforced by various covalently functionalised graphene. By using molecular dynamics simulations, the obtained results show that the covalent functionalisation in graphene plays a significant role in reducing the graphene-paraffin interfacial thermal resistance. This reduction is dependent on the coverage and type of functional groups. Among the various functional groups, butyl is found to be the most effective in reducing the interfacial thermal resistance, followed by methyl, phenyl and formyl. The other functional groups under consideration such as carboxyl, hydroxyl and amines are found to produce negligible reduction in the interfacial thermal resistance. For multilayer graphene with a layer number up to four, the interfacial thermal resistance is insensitive to the layer number. The effects of the different functional groups and the layer number on the interfacial thermal resistance are also elaborated using the vibrational density of states of the graphene and the paraffin matrix. The present findings provide useful guidelines in the application of functionalised graphene for practical thermal management.Comment: 8 figure

    Studying Amphiphilic Self-assembly with Soft Coarse-Grained Models

    Full text link

    Chain and local dynamics of polyisoprene as probed by experiments and computer simulations

    No full text
    The dynamics of designed short polyisoprene (PI) chains in the melt is investigated on a wide temperature window using dielectric relaxation spectroscopy and pulsed field gradient nuclear magnetic resonance (NMR). At high temperatures, molecular dynamics (MD) simulations performed using two different models (an explicit atom model and a united atom one) capture very well the dynamic properties documented experimentally. Structures pre-equilibrated with end-bridging Monte Carlo are used as initial configurations for MD runs at different temperatures, providing predictions for the temperature dependence of the dynamics of this bulk PI. Local dynamics is unique, independently of the probe (dielectric relaxation, dynamic light scattering, nuclear magnetic resonance, neutron scattering), although mean correlation times are significantly affected, to different extents, by librations. Chain dynamics over the molecular weight and temperature range studied can be described well by the Rouse model, as shown by both experimental data and a normal mode analysis on simulation trajectories. Deviations from the Rouse model emerge for the high modes at short times; still, this model offers a rather accurate picture. (C) 2003 American Institute of Physics
    corecore