35,891 research outputs found

    The attainable superconducting Tc in a model of phase coherence by percolation

    Full text link
    The onset of macroscopic phase coherence in superconducting cuprates is considered to be determined by random percolation between mesoscopic Jahn-Teller pairs, stripes or clusters. The model is found to predict the onset of superconductivity near 6% doping, maximum Tc near 15% doping and Tc= T* at optimum doping, and accounts for the destruction of superconductivity by Zn doping near 7%. The model also predicts a relation between the pairing (pseudogap) energy and Tc in terms of experimentally measurable quantities.Comment: 3 pages + 3 postscript figure

    Nuclear Medium Modifications of Hadrons from Generalized Parton Distributions

    Full text link
    We study the structure of generalized parton distributions in spin 0 nuclei within a microscopic approach for nuclear dynamics. GPDs can be used on one side as tools to unravel the deep inelastic transverse structure of nuclei in terms of both transverse spatial and transverse momentum degrees of freedom. On the other, one can obtain information on GPDs themselves by observing how they become modified in the nuclear environment. We derive the structure of the nuclear deeply virtual Compton scattering tensor and generalized parton distributions at leading order in QQ in a field-theoretical framework. The nuclear generalized parton distributions are calculated using a two step process -- the convolution approach -- where the scattering process happens from a quark inside a nucleon, itself inside a nucleus, disregarding final state interactions with both the nuclear and nucleon debris. We point out that details of the nuclear long range interactions such as two-body currents, can be disregarded compared to the deep inelastic induced modifications of the bound GPDs. We show how the pattern of nuclear modifications predicted, and in particular the deviations of off-shell effects from the longitudinal convolution provide clear signals to be sought in experimental measurements. Finally, we find interesting relationships by studying Mellin moments in nuclei: in particular we predict the AA-dependence for the DD-term of GPDs within a microscopic approach, and the behavior with tt of the total momentum carried by quarks in a nucleus. The latter provides an important element for the evaluation of nuclear hadronization phenomena which are vital for interpreting current and future data at RHIC, HERMES and Jefferson Lab.Comment: 29 pages, 10 figure

    Determination of anisotropic dipole moments in self-assembled quantum dots using Rabi oscillations

    Full text link
    By investigating the polarization-dependent Rabi oscillations using photoluminescence spectroscopy, we determined the respective transition dipole moments of the two excited excitonic states |Ex> and |Ey> of a single self-assembled quantum dot that are nondegenerate due to shape anisotropy. We find that the ratio of the two dipole moments is close to the physical elongation ratio of the quantum dot.Comment: 11 pages, 2 figures, MS Word generated PDF fil

    Estimation of the surface-d to bulk-s Crossover in the Macroscopic Superconducting Wavefunction in Cuprates

    Full text link
    The concept of a surface d- and bulk s-symmetry in cuprate superconductors is applied to recent small-angle neutron-scattering results. These show a change of hexagonal to square vortex lattice as a function of the magnetic field along the c-axis. Identifying the hexagonal lattice with s- and the square with d-symmetry, the crossover distance from the surface d to the bulk s perpendicular to the c-axis is estimated to be 35 nm for LSCO and roughly 7 nm for YBCO, both at optimum doping. The crossover along the c-axis has to be of only a few layers distance to reconcile tunneling, photoemission and pulsed femtosecond reflectivity experiments. These estimates are compatible with m-rotation, NMR and other experiments.Comment: 6 pages, 2 figure

    Temperature dependence of trapped magnetic field in MgB2 bulk superconductor

    Full text link
    Based on DC magnetization measurements, the temperature dependencies of the trapped magnetic field have been calculated for two MgB2 samples prepared by two different techniques: the high-pressure sintering and the hot pressing. Experimentally measured trapped field values for the first sample coincide remarkably well with calculated ones in the whole temperature range. This proves, from one side, the validity of the introduced calculation approach, and demonstrates, from another side, the great prospects of the hot pressing technology for large scale superconducting applications of the MgB2.Comment: 3 pages, 3 figures, submitted to AP

    Buried heterostructure vertical-cavity surface-emitting laser with semiconductor mirrors

    Get PDF
    We report a buried heterostructure vertical-cavity surface-emitting laser fabricated by epitaxial regrowth over an InGaAs quantum well gain medium. The regrowth technique enables microscale lateral confinement that preserves a high cavity quality factor (loaded QQ\approx 4000) and eliminates parasitic charging effects found in existing approaches. Under optimal spectral overlap between gain medium and cavity mode (achieved here at TT = 40 K) lasing was obtained with an incident optical power as low as PthP_{\rm th} = 10 mW (λp\lambda_{\rm p} = 808 nm). The laser linewidth was found to be \approx3 GHz at PpP_{\rm p}\approx 5 PthP_{\rm th}

    What pops out in positional priming of pop-out: insights from event-related EEG lateralizations

    Get PDF
    It is well established that, in visual pop-out search, reaction time (RT) performance is influenced by cross-trial repetitions versus changes of target-defining attributes. One instance of this is referred to as “positional priming of pop-out” (pPoP; Maljkovic and Nakayama, 1996). In positional PoP paradigms, the processing of the current target is examined depending on whether it occurs at the previous target or a previous distractor location, relative to a previously empty location (“neutral” baseline), permitting target facilitation and distractor inhibition to be dissociated. The present study combined RT measures with specific sensory- and motor-driven event-related lateralizations to track the time course of four distinct processing levels as a function of the target’s position across consecutive trials. The results showed that, relative to targets at previous target and “neutral” locations, the appearance of a target at a previous distractor location was associated with a delayed build-up of the posterior contralateral negativity wave, indicating that distractor positions are suppressed at early stages of visual processing. By contrast, presentation of a target at a previous target, relative to “neutral” and distractor locations, modulated the elicitation of the subsequent stimulus-locked lateralized readiness potential wave, indicating that post-selective response selection is facilitated if the target occurred at the same position as on the previous trial. Overall, the results of present study provide electrophysiological evidence for the idea that target location priming (RT benefits) does not originate from an enhanced coding of target saliency at repeated (target) locations; instead, they arise (near-) exclusively from processing levels subsequent to focal-attentional target selection
    corecore