5,401 research outputs found

    Heritability of live weight and condition score in a Holstein herd and correlations with milk traits – preliminary estimat

    Get PDF
    Genetic and environmental parameters for live weight and condition score have been determined for Holstein cows. Genetic correlations with milk traits were also derived. Monthly records were modelled by cubic splines, while the direct, additive effects of animal and the temporary environment (defined as cow environmental effects within lactations) were fitted as random. Lactation number interacted with monthly trends in cow live weight. Cows lost weight in the early part of the lactation. This reduction in live weight was probably because of a loss in body reserves, as suggested by a lower condition score. Cows gained live weight towards the end of lactation. The ultimate live weight of cows increased with parity because of ongoing growth. The heritability (h²) estimate for live weight was high at 0.65 ± 0.04, albeit still within the expected range. Condition score had a medium h² of 0.24 ± 0.05. Genetic and phenotypic correlations of live weight with milk yield were positive, i.e. 0.19 ± 0.14 and 0.12 ± 0.05, respectively, while correlations of condition score with milk yield were negative, i.e. 0.42 ± 0.15 and -0.17 ± 0.04, respectively. Although live weight could be used as an indirect indicator of feed intake and efficiency of milk production, other body conformation traits could also be used. There is a need in the South African dairy industry for a selection index based on production parameters and some traits such as live weight, condition score or specific conformation traits. However, a large participation of animals in milk recording and measurement of such traits is a prerequisite for such developments. South African Journal of Animal Science Vol. 36(2) 2006: 79-8

    Aquatic vertebrate locomotion:Wakes from body waves

    Get PDF
    Vertebrates swimming with undulations of the body and tail have inflection points where the curvature of the body changes from concave to convex or vice versa. These inflection paints travel down the body at the speed of the running wave of bending, In movements with increasing amplitudes, the body rotates around the inflection points, inducing semicircular flows in the adjacent water on both sides of the body that together form proto-vortices, Like the inflection points, the proto-vortices travel towards the end of the tail. In the experiments described here, the phase relationship between the tailbeat cycle and the inflection point cycle can be used as a first approximation of the phase between the proto-vortex and the tailbeat cycle. Protovortices are shed at the tail as body vortices at roughly the same time as the inflection points reach the tail tip. Thus, the phase between proto-vortex shedding and tailbeat cycle determines the interaction between body and tail vortices, which are shed when the tail changes direction. The shape of the body wave is under the control of the fish and determines the position of vortex shedding relative to the mean path of motion. This, in turn, determines whether and how the body vortex interacts with the tail vortex. The shape of the wake and the contribution of the body to thrust depend on this interaction between body vortex and tail vortex. So far, we have been able to describe two types of make. One has two vortices per tailbeat where each vortex consists of a tail vortex enhanced by a body vortex. A second, more variable, type of wake has four vortices per tailbeat: two tail vortices and two body vortices shed from the tail tip while it is moving from one extreme position to the next. The function of the second type is still enigmatic

    Considering the Case for Biodiversity Cycles: Reexamining the Evidence for Periodicity in the Fossil Record

    Get PDF
    Medvedev and Melott (2007) have suggested that periodicity in fossil biodiversity may be induced by cosmic rays which vary as the Solar System oscillates normal to the galactic disk. We re-examine the evidence for a 62 million year (Myr) periodicity in biodiversity throughout the Phanerozoic history of animal life reported by Rohde & Mueller (2005), as well as related questions of periodicity in origination and extinction. We find that the signal is robust against variations in methods of analysis, and is based on fluctuations in the Paleozoic and a substantial part of the Mesozoic. Examination of origination and extinction is somewhat ambiguous, with results depending upon procedure. Origination and extinction intensity as defined by RM may be affected by an artifact at 27 Myr in the duration of stratigraphic intervals. Nevertheless, when a procedure free of this artifact is implemented, the 27 Myr periodicity appears in origination, suggesting that the artifact may ultimately be based on a signal in the data. A 62 Myr feature appears in extinction, when this same procedure is used. We conclude that evidence for a periodicity at 62 Myr is robust, and evidence for periodicity at approximately 27 Myr is also present, albeit more ambiguous.Comment: Minor modifications to reflect final published versio

    Metabolic effects of diets differing in glycaemic index depend on age and endogenous GIP

    Get PDF
    Aims/hypothesis High- vs low-glycaemic index (GI) diets unfavourably affect body fat mass and metabolic markers in rodents. Different effects of these diets could be age-dependent, as well as mediated, in part, by carbohydrate-induced stimulation of glucose-dependent insulinotrophic polypeptide (GIP) signalling. Methods Young-adult (16 weeks) and aged (44 weeks) male wild-type (C57BL/6J) and GIP-receptor knockout (Gipr −/− ) mice were exposed to otherwise identical high-carbohydrate diets differing only in GI (20–26 weeks of intervention, n = 8–10 per group). Diet-induced changes in body fat distribution, liver fat, locomotor activity, markers of insulin sensitivity and substrate oxidation were investigated, as well as changes in the gene expression of anorexigenic and orexigenic hypothalamic factors related to food intake. Results Body weight significantly increased in young-adult high- vs low-GI fed mice (two-way ANOVA, p < 0.001), regardless of the Gipr genotype. The high-GI diet in young-adult mice also led to significantly increased fat mass and changes in metabolic markers that indicate reduced insulin sensitivity. Even though body fat mass also slightly increased in high- vs low-GI fed aged wild-type mice (p < 0.05), there were no significant changes in body weight and estimated insulin sensitivity in these animals. However, aged Gipr −/− vs wild-type mice on high-GI diet showed significantly lower cumulative net energy intake, increased locomotor activity and improved markers of insulin sensitivity. Conclusions/interpretation The metabolic benefits of a low-GI diet appear to be more pronounced in younger animals, regardless of the Gipr genotype. Inactivation of GIP signalling in aged animals on a high-GI diet, however, could be beneficial
    corecore