961 research outputs found
Multiple morbidities in companion dogs: a novel model for investigating age-related disease
The proportion of men and women surviving over 65 years has been steadily increasing over the last century. In their later years, many of these individuals are afflicted with multiple chronic conditions, placing increasing pressure on healthcare systems. The accumulation of multiple health problems with advanced age is well documented, yet the causes are poorly understood. Animal models have long been employed in attempts to elucidate these complex mechanisms with limited success. Recently, the domestic dog has been proposed as a promising model of human aging for several reasons. Mean lifespan shows twofold variation across dog breeds. In addition, dogs closely share the environments of their owners, and substantial veterinary resources are dedicated to comprehensive diagnosis of conditions in dogs. However, while dogs are therefore useful for studying multimorbidity, little is known about how aging influences the accumulation of multiple concurrent disease conditions across dog breeds. The current study examines how age, body weight, and breed contribute to variation in multimorbidity in over 2,000 companion dogs visiting private veterinary clinics in England. In common with humans, we find that the number of diagnoses increases significantly with age in dogs. However, we find no significant weight or breed effects on morbidity number. This surprising result reveals that while breeds may vary in their average longevity and causes of death, their age-related trajectories of morbidities differ little, suggesting that age of onset of disease may be the source of variation in lifespan across breeds. Future studies with increased sample sizes and longitudinal monitoring may help us discern more breed-specific patterns in morbidity. Overall, the large increase in multimorbidity seen with age in dogs mirrors that seen in humans and lends even more credence to the value of companion dogs as models for human morbidity and mortality
The main rhinovirus respiratory tract adhesion site (ICAM-1) is upregulated in smokers and patients with chronic airflow limitation (CAL).
BACKGROUND: ICAM-1 is a major receptor for ~60% of human rhinoviruses, and non-typeable Haemophilus influenzae, two major pathogens in COPD. Increased cell-surface expression of ICAM-1 in response to tobacco smoke exposure has been suggested. We have investigated epithelial ICAM-1 expression in both the large and small airways, and lung parenchyma in smoking-related chronic airflow limitation (CAL) patients. METHODS: We evaluated epithelial ICAM-1 expression in resected lung tissue: 8 smokers with normal spirometry (NLFS); 29 CAL patients (10 small-airway disease; 9 COPD-smokers; 10 COPD ex-smokers); Controls (NC): 15 normal airway/lung tissues. Immunostaining with anti-ICAM-1 monoclonal antibody was quantified with computerized image analysis. The percent and type of cells expressing ICAM-1 in large and small airway epithelium and parenchyma were enumerated, plus percentage of epithelial goblet and submucosal glands positive for ICAM- 1. RESULTS: A major increase in ICAM-1 expression in epithelial cells was found in both large (p < 0.006) and small airways (p < 0.004) of CAL subjects compared to NC, with NLFS being intermediate. In the CAL group, both basal and luminal areas stained heavily for ICAM-1, so did goblet cells and sub-mucosal glands, however in either NC or NLFS subjects, only epithelial cell luminal surfaces stained. ICAM-1 expression on alveolar pneumocytes (mainly type II) was slightly increased in CAL and NLFS (p < 0.01). Pack-years of smoking correlated with ICAM-1 expression (r = 0.49; p < 0.03). CONCLUSION: Airway ICAM-1 expression is markedly upregulated in CAL group, which could be crucial in rhinoviral and NTHi infections. The parenchymal ICAM-1 is affected by smoking, with no further enhancement in CAL subjects
β-catenin, Twist and Snail: Transcriptional regulation of EMT in smokers and COPD, and relation to airflow obstruction.
COPD is characterised by poorly reversible airflow obstruction usually due to cigarette smoking. The transcription factor clusters of β-catenin/Snail1/Twist has been implicated in the process of epithelial mesenchymal transition (EMT), an intermediate between smoking and airway fibrosis, and indeed lung cancer. We have investigated expression of these transcription factors and their "cellular localization" in bronchoscopic airway biopsies from patients with COPD, and in smoking and non-smoking controls. An immune-histochemical study compared cellular protein expression of β-catenin, Snail1 and Twist, in these subject groups in 3 large airways compartment: epithelium (basal region), reticular basement membrane (Rbm) and underlying lamina propria (LP). β-catenin and Snail1 expression was generally high in all subjects throughout the airway wall with marked cytoplasmic to nuclear shift in COPD (P < 0.01). Twist expression was generalised in the epithelium in normal but become more basal and nuclear with smoking (P < 0.05). In addition, β-catenin and Snail1 expression, and to lesser extent of Twist, was related to airflow obstruction and to expression of a canonical EMT biomarker (S100A4). The β-catenin-Snail1-Twist transcription factor cluster is up-regulated and nuclear translocated in smokers and COPD, and their expression is closely related to both EMT activity and airway obstruction
An Alternative Paper Based Tissue Washing Method for Mass Spectrometry Imaging: Localized Washing and Fragile Tissue Analysis
Surface treatment of biological tissue sections improves detection of peptides and proteins for mass spectrometry imaging. However, liquid surface treatments can result in diffusion of surface analytes and fragile tissue sections can be easily damaged by typical washing solvents. Here, we present a new surface washing procedure for mass spectrometry imaging. This procedure uses solvent wetted fiber-free paper to enable local washing of tissue sections for mass spectrometry imaging and tissue profiling experiments. In addition, the method allows fragile tissues that cannot be treated by conventional washing techniques to be analyzed by mass spectrometry imaging
Sponge non-metastatic Group I Nme gene/protein - structure and function is conserved from sponges to humans
<p>Abstract</p> <p>Background</p> <p>Nucleoside diphosphate kinases NDPK are evolutionarily conserved enzymes present in Bacteria, Archaea and Eukarya, with human Nme1 the most studied representative of the family and the first identified metastasis suppressor. Sponges (Porifera) are simple metazoans without tissues, closest to the common ancestor of all animals. They changed little during evolution and probably provide the best insight into the metazoan ancestor's genomic features. Recent studies show that sponges have a wide repertoire of genes many of which are involved in diseases in more complex metazoans. The original function of those genes and the way it has evolved in the animal lineage is largely unknown. Here we report new results on the metastasis suppressor gene/protein homolog from the marine sponge <it>Suberites domuncula</it>, NmeGp1Sd. The purpose of this study was to investigate the properties of the sponge Group I Nme gene and protein, and compare it to its human homolog in order to elucidate the evolution of the structure and function of Nme.</p> <p>Results</p> <p>We found that sponge genes coding for Group I Nme protein are intron-rich. Furthermore, we discovered that the sponge NmeGp1Sd protein has a similar level of kinase activity as its human homolog Nme1, does not cleave negatively supercoiled DNA and shows nonspecific DNA-binding activity. The sponge NmeGp1Sd forms a hexamer, like human Nme1, and all other eukaryotic Nme proteins. NmeGp1Sd interacts with human Nme1 in human cells and exhibits the same subcellular localization. Stable clones expressing sponge NmeGp1Sd inhibited the migratory potential of CAL 27 cells, as already reported for human Nme1, which suggests that Nme's function in migratory processes was engaged long before the composition of true tissues.</p> <p>Conclusions</p> <p>This study suggests that the ancestor of all animals possessed a NmeGp1 protein with properties and functions similar to evolutionarily recent versions of the protein, even before the appearance of true tissues and the origin of tumors and metastasis.</p
Future Climate Projections in Africa: Where Are We Headed?
This paper offers an overview of how climate change is already affecting farmers across eastern and southern Africa, and how it will continue to affect them in the future. The rising temperatures and increased rainfall variability associated with climate change are undermining the livelihoods and food security of Africa’s farmers, most of whom work at a subsistence level and also face problems of poverty, inadequate infrastructure and poor governance. To address these problems, governments and development organizations have promoted climate-smart agriculture (CSA). These projects, however, have been constrained by inadequate data and predictions regarding future climate change. In particular, farmers in Africa need better projections of the climate hazards for specific regions. Historical weather data at the local level contains many gaps, and the continuing collection of such data could be much improved. Strengthening the database of observed weather is critical to understanding the changes that have occurred already, to project future changes, and to plan appropriately to address them. Once collected and analyzed, climate data must be communicated in ways that help decision-makers understand climate impacts. Good tools are available—such as ClimateWizard.org and Servir ClimateServ—but practitioners at the local level must have the access and training to use them. Even in places where projections are uncertain, steps can be taken now to implement CSA practices and make farmers more resilient in the face of climate change
The Yeast Cell Fusion Protein Prm1p Requires Covalent Dimerization to Promote Membrane Fusion
Prm1p is a multipass membrane protein that promotes plasma membrane fusion during yeast mating. The mechanism by which Prm1p and other putative regulators of developmentally controlled cell-cell fusion events facilitate membrane fusion has remained largely elusive. Here, we report that Prm1p forms covalently linked homodimers. Covalent Prm1p dimer formation occurs via intermolecular disulfide bonds of two cysteines, Cys-120 and Cys-545. PRM1 mutants in which these cysteines have been substituted are fusion defective. These PRM1 mutants are normally expressed, retain homotypic interaction and can traffic to the fusion zone. Because prm1-C120S and prm1-C545S mutants can form covalent dimers when coexpressed with wild-type PRM1, an intermolecular C120-C545 disulfide linkage is inferred. Cys-120 is adjacent to a highly conserved hydrophobic domain. Mutation of a charged residue within this hydrophobic domain abrogates formation of covalent dimers, trafficking to the fusion zone, and fusion-promoting activity. The importance of intermolecular disulfide bonding informs models regarding the mechanism of Prm1-mediated cell-cell fusion
Phenotypic Variation and Bistable Switching in Bacteria
Microbial research generally focuses on clonal populations. However, bacterial cells with identical genotypes frequently display different phenotypes under identical conditions. This microbial cell individuality is receiving increasing attention in the literature because of its impact on cellular differentiation, survival under selective conditions, and the interaction of pathogens with their hosts. It is becoming clear that stochasticity in gene expression in conjunction with the architecture of the gene network that underlies the cellular processes can generate phenotypic variation. An important regulatory mechanism is the so-called positive feedback, in which a system reinforces its own response, for instance by stimulating the production of an activator. Bistability is an interesting and relevant phenomenon, in which two distinct subpopulations of cells showing discrete levels of gene expression coexist in a single culture. In this chapter, we address techniques and approaches used to establish phenotypic variation, and relate three well-characterized examples of bistability to the molecular mechanisms that govern these processes, with a focus on positive feedback.
How to Build Transcriptional Network Models of Mammalian Pattern Formation
Genetic regulatory networks of sequence specific transcription factors underlie pattern formation in multicellular organisms. Deciphering and representing the mammalian networks is a central problem in development, neurobiology, and regenerative medicine. Transcriptional networks specify intermingled embryonic cell populations during pattern formation in the vertebrate neural tube. Each embryonic population gives rise to a distinct type of adult neuron. The homeodomain transcription factor Lbx1 is expressed in five such populations and loss of Lbx1 leads to distinct respecifications in each of the five populations. allele, respectively. Microarrays were used to show that expression levels of 8% of all transcription factor genes were altered in the respecified pool. These transcription factor genes constitute 20–30% of the active nodes of the transcriptional network that governs neural tube patterning. Half of the 141 regulated nodes were located in the top 150 clusters of ultraconserved non-coding regions. Generally, Lbx1 repressed genes that have expression patterns outside of the Lbx1-expressing domain and activated genes that have expression patterns inside the Lbx1-expressing domain.nalysis, and think that it will be generally useful in discovering and assigning network interactions to specific populations. We discuss how ANCEA, coupled with population partitioning analysis, can greatly facilitate the systematic dissection of transcriptional networks that underlie mammalian patterning
- …