84 research outputs found

    Suppressing the encoding of new information in memory: a behavioral study derived from principles of hippocampal function.

    Get PDF
    Cognitive processes do not occur in isolation. Interactions between cognitive processes can be observed as a cost in performance following a switch between tasks, a cost that is greatest when the cognitive requirements of the sequential tasks compete. Interestingly, the long-term mnemonic goals associated with specific cognitive tasks can also directly compete. For example, encoding the sequential order in which stimuli are presented in the commonly-utilised 2-Back working memory (WM) tasks is counter-productive to task performance, as this task requires the continual updating of the contents of one's current mental set. Performance of this task consistently results in reduced activity within the medial temporal lobe (MTL), and this response is believed to reflect the inhibitory mnemonic component of the task. Conversely, there are numerous cognitive paradigms in which participants are explicitly instructed to encode incoming information and performance of these tasks reliably increases MTL activity. Here, we explore the behavioural cost of sequentially performing two tasks with conflicting long-term mnemonic goals and contrasting neural profiles within the MTL. We hypothesised that performing the 2-Back WM prior to a hippocampal-dependent memory task would impair performance on the latter task. We found that participants who performed the 2-Back WM task, prior to the encoding of novel verbal/face-name stimuli, recollected significantly fewer of these stimuli, compared to those who had performed a 0-Back control task. Memory processes believed to be independent of the MTL were unaffected. Our results suggest that the inhibition of MTL-dependent mnemonic function persists beyond the cessation of the 2-Back WM task and can alter performance on entirely separate and subsequently performed memory tasks. Furthermore, they indicate that performance of such tasks may induce a temporarily-sustained, virtual lesion of the hippocampus, which could be used as a probe to explore cognitive processes in the absence of hippocampal involvement

    A New Role for the Parahippocampal Cortex in Representing Space

    Get PDF
    The debate surrounding the function of the human posterior parahippocampal cortex (PHC) is currently dominated by two competing theories. The spatial layout hypothesis proposes that PHC processes information about the shape of space embodied in layout-defining scene features. The contextual association hypothesis rejects this notion, proposing instead that PHC responds to highly contextualized, but not necessarily spatial, stimuli. Here we present a novel concept that suggests PHC is primarily concerned with any representation that depicts three-dimensional local space, be it scenes or even single objects. Specifically, we identified space-defining (SD) and space-ambiguous (SA) single objects, where SD objects consistently evoke a strong sense of the surrounding space while SA objects do not, in the absence of any background, spatial layout, or context. We found that participants could easily identify and distinguish between SD and SA objects. This distinction was subsequently affirmed at a neural level, where visualizing or viewing single SD objects compared with SA objects engaged PHC, despite these single SD objects offering no information about the shape or layout of the space. Moreover, this PHC response was robust and not accounted for by other factors, including contextual associations. Instead, it was linked to intrinsic object properties, specifically a combination of perceived object size and portability. By showing that PHC is responsive to the awareness of surrounding local space suggests its role in scene processing is basic and fundamental, such that it is not dependent on complex scene properties such as geometric structure, scene schema, or contextual associations

    Constructing, Perceiving, and Maintaining Scenes: Hippocampal Activity and Connectivity.

    Get PDF
    In recent years, evidence has accumulated to suggest the hippocampus plays a role beyond memory. A strong hippocampal response to scenes has been noted, and patients with bilateral hippocampal damage cannot vividly recall scenes from their past or construct scenes in their imagination. There is debate about whether the hippocampus is involved in the online processing of scenes independent of memory. Here, we investigated the hippocampal response to visually perceiving scenes, constructing scenes in the imagination, and maintaining scenes in working memory. We found extensive hippocampal activation for perceiving scenes, and a circumscribed area of anterior medial hippocampus common to perception and construction. There was significantly less hippocampal activity for maintaining scenes in working memory. We also explored the functional connectivity of the anterior medial hippocampus and found significantly stronger connectivity with a distributed set of brain areas during scene construction compared with scene perception. These results increase our knowledge of the hippocampus by identifying a subregion commonly engaged by scenes, whether perceived or constructed, by separating scene construction from working memory, and by revealing the functional network underlying scene construction, offering new insights into why patients with hippocampal lesions cannot construct scenes

    Scenes, Spaces, and Memory Traces: What Does the Hippocampus Do?

    Get PDF
    The hippocampus is one of the most closely scrutinized brain structures in neuroscience. While traditionally associated with memory and spatial cognition, in more recent years it has also been linked with other functions, including aspects of perception and imagining fictitious and future scenes. Efforts continue apace to understand how the hippocampus plays such an apparently wide-ranging role. Here we consider recent developments in the field and in particular studies of patients with bilateral hippocampal damage. We outline some key findings, how they have subsequently been challenged, and consider how to reconcile the disparities that are at the heart of current lively debates in the hippocampal literature

    Scene construction in developmental amnesia: An fMRI study.

    Get PDF
    Amnesic patients with bilateral hippocampal damage sustained in adulthood are generally unable to construct scenes in their imagination. By contrast, patients with developmental amnesia (DA), where hippocampal damage was acquired early in life, have preserved performance on this task, although the reason for this sparing is unclear. One possibility is that residual function in remnant hippocampal tissue is sufficient to support basic scene construction in DA. Such a situation was found in the one amnesic patient with adult-acquired hippocampal damage (P01) who could also construct scenes. Alternatively, DA patients' scene construction might not depend on the hippocampus, perhaps being instead reliant on non-hippocampal regions and mediated by semantic knowledge. To adjudicate between these two possibilities, we examined scene construction during functional MRI (fMRI) in Jon, a well-characterised patient with DA who has previously been shown to have preserved scene construction. We found that when Jon constructed scenes he activated many of the regions known to be associated with imagining scenes in control participants including ventromedial prefrontal cortex, posterior cingulate, retrosplenial and posterior parietal cortices. Critically, however, activity was not increased in Jon's remnant hippocampal tissue. Direct comparisons with a group of control participants and patient P01, confirmed that they activated their right hippocampus more than Jon. Our results show that a type of non-hippocampal dependent scene construction is possible and occurs in DA, perhaps mediated by semantic memory, which does not appear to involve the vivid visualisation of imagined scenes

    The Hippocampus: A Manifesto for Change.

    Get PDF
    We currently lack a unified and mechanistic account of how the hippocampus supports a range of disparate cognitive functions that includes episodic memory, imagining the future, and spatial navigation. Here, we argue that in order to leverage this long-standing issue, traditional notions regarding the architecture of memory should be eschewed. Instead, we invoke the idea that scenes are central to hippocampal information processing. This view is motivated by mounting evidence that the hippocampus is constantly constructing spatially coherent scenes, automatically anticipating and synthesizing representations of the world beyond the immediate sensorium. By characterizing the precise relationship between scenes and the hippocampus, we believe a theoretically enriched understanding of its fundamental role and its breakdown in pathology can emerge. (PsycINFO Database Record (c) 2013 APA, all rights reserved)

    Memory, imagination, and predicting the future: A common brain mechanism?

    Get PDF
    On the face of it, memory, imagination, and prediction seem to be distinct cognitive functions. However, metacognitive, cognitive, neuropsychological, and neuroimaging evidence is emerging that they are not, suggesting intimate links in their underlying processes. Here, we explore these empirical findings and the evolving theoretical frameworks that seek to explain how a common neural system supports our recollection of times past, imagination, and our attempts to predict the future

    A New Role for the Parahippocampal Cortex in Representing Space

    Get PDF
    The debate surrounding the function of the human posterior parahippocampal cortex (PHC) is currently dominated by two competing theories. The spatial layout hypothesis proposes that PHC processes information about the shape of space embodied in layout-defining scene features. The contextual association hypothesis rejects this notion, proposing instead that PHC responds to highly contextualized, but not necessarily spatial, stimuli. Here we present a novel concept that suggests PHC is primarily concerned with any representation that depicts three-dimensional local space, be it scenes or even single objects. Specifically, we identified space-defining (SD) and space-ambiguous (SA) single objects, where SD objects consistently evoke a strong sense of the surrounding space while SA objects do not, in the absence of any background, spatial layout, or context. We found that participants could easily identify and distinguish between SD and SA objects. This distinction was subsequently affirmed at a neural level, where visualizing or viewing single SD objects compared with SA objects engaged PHC, despite these single SD objects offering no information about the shape or layout of the space. Moreover, this PHC response was robust and not accounted for by other factors, including contextual associations. Instead, it was linked to intrinsic object properties, specifically a combination of perceived object size and portability. By showing that PHC is responsive to the awareness of surrounding local space suggests its role in scene processing is basic and fundamental, such that it is not dependent on complex scene properties such as geometric structure, scene schema, or contextual associations

    Retrosplenial cortex codes for permanent landmarks.

    Get PDF
    Landmarks are critical components of our internal representation of the environment, yet their specific properties are rarely studied, and little is known about how they are processed in the brain. Here we characterised a large set of landmarks along a range of features that included size, visual salience, navigational utility, and permanence. When human participants viewed images of these single landmarks during functional magnetic resonance imaging (fMRI), parahippocampal cortex (PHC) and retrosplenial cortex (RSC) were both engaged by landmark features, but in different ways. PHC responded to a range of landmark attributes, while RSC was engaged by only the most permanent landmarks. Furthermore, when participants were divided into good and poor navigators, the latter were significantly less reliable at identifying the most permanent landmarks, and had reduced responses in RSC and anterodorsal thalamus when viewing such landmarks. The RSC has been widely implicated in navigation but its precise role remains uncertain. Our findings suggest that a primary function of the RSC may be to process the most stable features in an environment, and this could be a prerequisite for successful navigation
    • …
    corecore