2,690 research outputs found

    Insights into pneumococcal pneumonia using lung aspirates and nasopharyngeal swabs collected from pneumonia patients in The Gambia.

    Get PDF
    We investigated the pathogenesis of pneumococcal pneumonia using clinical specimens collected for pneumonia surveillance in The Gambia. Lung aspirates and nasopharyngeal swabs from 31 patients were examined by culture, qPCR, whole genome sequencing, serotyping, and reverse transcription qPCR. Five lung aspirates cultured pneumococci, with a matching strain identified in the nasopharynx. Three virulence genes including ply (pneumolysin) were upregulated >20-fold in the lung compared with the nasopharynx. Nasopharyngeal pneumococcal density was higher in pediatric pneumonia patients compared with controls (p <0.0001). Findings suggest that changes in pneumococcal gene expression occurring in the lung environment may be important in pathogenesis

    CO2 Control of Trichodesmium N-2 Fixation, Photosynthesis, Growth rates, and Elemental Ratios: Implications for Past, Present, and Future Ocean Biogeochemistry

    Get PDF
    Diazotrophic marine cyanobacteria in the genus Trichodesmium contribute a large fraction of the new nitrogen entering the oligotrophic oceans, but little is known about how they respond to shifts in global change variables such as carbon dioxide (CO2) and temperature. We compared Trichodesmium dinitrogen (N2) and CO2 fixation rates during steady-state growth under past, current, and future CO2 scenarios, and at two relevant temperatures. At projected CO2 levels of year 2100 (76 Pa, 750 ppm), N2 fixation rates of Pacific and Atlantic isolates increased 35-100%, and CO2 fixation rates increased 15-128% relative to present day CO2 conditions (39 Pa, 380 ppm). CO2 mediated rate increases were of similar relative magnitude in both phosphorus (P)-replete and P-limited cultures, suggesting that this effect may be independent of resource limitation. Neither isolate could grow at 15 Pa (150 ppm) CO2, but N2 and CO2 fixation rates, growth rates, and nitrogen : phosophorus (N : P) ratios all increased significantly between 39 Pa and 152 Pa (1500 ppm). In contrast, these parameters were affected only minimally or not at all by a 4°C temperature change. Photosynthesis versus irradiance parameters, however, responded to both CO2 and temperature but in different ways for each isolate. These results suggest that by the end of this century, elevated CO2 could substantially increase global Trichodesmium N2 and CO2 fixation, fundamentally altering the current marine N and C cycles and potentially driving some oceanic regimes towards P limitation. CO2 limitation of Trichodesmium diazotrophy during past glacial periods could also have contributed to setting minimum atmospheric CO2 levels through downregulation of the biological pump. The relationship between marine N2 fixation and atmospheric CO2 concentration appears to be more complex than previously realized and needs to be considered in the context of the rapidly changing oligotrophic oceans

    Functional protease-activated receptors in the dorsal motor nucleus of the vagus

    Full text link
    Protease-activated receptors (PARs), a family member of G-protein coupled receptors, are present and functionally active in a wide variety of cells. The object of this study was to demonstrate the presence and function of PAR-1 and PAR-2 in the dorsal motor nucleus of the vagus (DMV).DMNV neurons were isolated from neonatal rat brainstems using micro-dissection and enzymatic digestion. Neurons were cultured in Neurobasal medium A containing 2% B27 supplement. Intracellular calcium concentration ([Ca 2 +  ] i ) was measured using fura-2 based microspectrometry. Expression of PARs was detected by RT-PCR and immunofluorescent staining.Thrombin and PAR-1 agonist peptide activate PAR-1 with a maximum change in [Ca 2 +  ] i expressed as δF/F0 of 229 ± 14% and 137 ± 7%, respectively. Trypsin and PAR-2 agonist peptide activate PAR-2 with a maximum δF/F0 change of 258 ± 12% and 242 ± 10%, respectively. Inhibition of phospholipase C (PLC) by U73312 (1 μm) decreased the maximal change in δF/F0 induced by PAR-1 activation from 140 ± 17% to 21 ± 3%, while the PAR-2-mediated maximal change in δF/F0 decreased from 185 ± 21% to 19 ± 6%. Blockade of IP3 receptor with 2APB inhibited the maximal change in δF/F0 due to PAR-1 and PAR-2 activation by 72 ± 13% and 71 ± 20% respectively. PAR-1 immnuoreactivity was present in DMV neurons. Increase in transcripts for PAR-1 and PAR-2 were detected in DMV tissues derived from IBD rats relative to control animals. Our results indicate that PAR-1 and PAR-2 are present in the DMV neurons, and their activation leads to increases in intracellular calcium via signal transduction mechanism that involves activation of PLC and the production of IP3.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/79371/1/j.1365-2982.2009.01391.x.pd

    Very-low-energy diets and morbidity: a systematic review of longer-term evidence.

    Get PDF
    Evidence from the literature supports the safe use of very-low-energy diets (VLED) for up to 3 months in supervised conditions for patients who fail to meet a target weight loss using a standard low-fat, reduced-energy approach. There is, however, a need for longer-term outcomes on obesity and associated morbidities following a VLED. The present systematic review aims to investigate longer-term outcomes from studies using VLED, with a minimum duration of 12 months, published between January 2000 and December 2010. Studies conducted in both children and adults, with a mean/median BMI of ≥ 28 kg/m2 were included. PubMed, MEDLINE, Web of Science and Science Direct were searched. Reference lists of studies and reviews were manually searched. Weight loss or prevention of weight gain and morbidities were the main outcomes assessed. A total of thirty-two out of 894 articles met the inclusion criteria. The duration of the studies ranged from 12 months to 5 years. Periods of VLED ranged from 25 d to 9 months. Several studies incorporated aspects of behaviour therapy, exercise, low-fat diets, low-carbohydrate diets or medication. Current evidence demonstrates significant weight loss and improvements in blood pressure, waist circumference and lipid profile in the longer term following a VLED. Interpretation of the results, however, was restricted and conclusions with which to guide best practice are limited due to heterogeneity between the studies. The present review clearly identifies the need for more evidence and standardised studies to assess the longer-term benefits from weight loss achieved using VLED

    Database of Diazotrophs in Global Ocean: Abundance, Biomass, and Nitrogen Fixation Rates

    Get PDF
    Marine N2 fixing microorganisms, termed di-azotrophs, are a key functional group in marine pelagic ecosystems. The biological fixation of dinitrogen (N2) to bioavailable nitrogen provides an important new source of nitrogen for pelagic marine ecosystems and influences primary productivity and organic matter export to the deep ocean. As one of a series of efforts to collect biomass and rates specific to different phytoplankton functional groups, we have constructed a database on diazotrophic organisms in the global pelagic upper ocean by compiling about 12 000 direct field measurements of cyanobacterial diazotroph abundances (based on microscopic cell counts or qPCR assays targeting the nifH genes) and N2 fixation rates. Biomass conversion factors are estimated based on cell sizes to convert abundance data to diazotrophic biomass. The database is limited spatially, lacking large regions of the ocean especially in the Indian Ocean. The data are approximately log-normal distributed, and large variances exist in most sub-databases with non-zero values differing 5 to 8 orders of magnitude. Reporting the geometric mean and the range of one geometric standard error below and above the geometric mean, the pelagic N2 fixation rate in the global ocean is estimated to be 62 (52-73) Tg N yr-1 and the pelagic diazotrophic biomass in the global ocean is estimated to be 2.1 (1.4-3.1) Tg C from cell counts and to 89 (43-150) Tg C from nifH- based abundances. Reporting the arithmetic mean and one standard error instead, these three global estimates are 140 ± 9.2 Tg Nyr-1, 18 ± 1.8 Tg C and 590 ± 70 Tg C, respectively. Uncertainties related to biomass conversion factors can change the estimate of geometric mean pelagic diazotrophic biomass in the global ocean by about ± 70 %. It was recently established that the most commonly applied method used to measure N2 fixation has underestimated the true rates. As a result, one can expect that future rate measurements will shift the mean N2 fixation rate upward and may result in significantly higher estimates for the global N2 fixation. The evolving database can nevertheless be used to study spatial and temporal distributions and variations of marine N2 fixation, to validate geochemical estimates and to parameterize and validate biogeochemical models, keeping in mind that future rate measurements may rise in the future

    Recoil Polarization Measurements of the Proton Electromagnetic Form Factor Ratio to Q^2 = 8.5 GeV^2

    Full text link
    Among the most fundamental observables of nucleon structure, electromagnetic form factors are a crucial benchmark for modern calculations describing the strong interaction dynamics of the nucleon's quark constituents; indeed, recent proton data have attracted intense theoretical interest. In this letter, we report new measurements of the proton electromagnetic form factor ratio using the recoil polarization method, at momentum transfers Q2=5.2, 6.7, and 8.5 GeV2. By extending the range of Q2 for which GEp is accurately determined by more than 50%, these measurements will provide significant constraints on models of nucleon structure in the non-perturbative regime

    Three-Dimensional Radiofrequency Tissue Tightening: A Proposed Mechanism and Applications for Body Contouring

    Get PDF
    The use of radiofrequency energy to produce collagen matrix contraction is presented. Controlling the depth of energy delivery, the power applied, the target skin temperature, and the duration of application of energy at various soft tissue levels produces soft tissue contraction, which is measurable. This technology allows precise soft tissue modeling at multiple levels to enhance the result achieved over traditional suction-assisted lipectomy as well as other forms of energy such as ultrasonic and laser-generated lipolysis
    corecore