20 research outputs found

    SWI/SNF-mediated chromatin remodeling induces Z-DNA formation on a nucleosome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Z-DNA is a higher-energy, left-handed form of the double helix. A primary function of Z-DNA formation is to facilitate transcriptional initiation and activation. Sequences favoring Z-DNA formation are frequently located in promoter regions and Z-DNA is stabilized by torsional strain resulting from negative supercoiling, such as that generated by an actively transcribing polymerase or by a nucleosome remodeling event. We previously have shown that activation of the CSF1 gene by a chromatin remodeling event in the promoter results in Z-DNA formation at TG repeats within the promoter.</p> <p>Results</p> <p>We show that remodeling of a mononucleosome by the human SWI/SNF complex results in Z-DNA formation when the DNA within the mononucleosome contains Z-DNA favoring sequence. Nuclease accessibility patterns of nucleosome core particle consisting of Z-DNA are quite different from counterpart nucleosomes containing classic B-DNA. Z-nucleosomes represent a novel mononucleosome structure.</p> <p>Conclusions</p> <p>We present evidence that Z-DNA can form on nucleosomes though previous observations indicate the occlusion of nucleosome formation from Z-DNA.</p

    Metabolite-related dietary patterns and the development of islet autoimmunity

    Get PDF
    The role of diet in type 1 diabetes development is poorly understood. Metabolites, which reflect dietary response, may help elucidate this role. We explored metabolomics and lipidomics differences between 352 cases of islet autoimmunity (IA) and controls in the TEDDY (The Environmental Determinants of Diabetes in theYoung) study. We created dietary patterns reflecting pre-IA metabolite differences between groups and examined their association with IA. Secondary outcomes included IA cases positive for multiple autoantibodies (mAb+). The association of 853 plasma metabolites with outcomes was tested at seroconversion to IA, just prior to seroconversion, and during infancy. Key compounds in enriched metabolite sets were used to create dietary patterns reflecting metabolite composition, which were then tested for association with outcomes in the nested case-control subset and the full TEDDY cohort. Unsaturated phosphatidylcholines, sphingomyelins, phosphatidylethanolamines, glucosylceramides, and phospholipid ethers in infancy were inversely associated with mAb+ risk, while dicarboxylic acids were associated with an increased risk. An infancy dietary pattern representing higher levels of unsaturated phosphatidylcholines and phospholipid ethers, and lower sphingomyelins was protective for mAb+ in the nested case-control study only. Characterization of this high-risk infant metabolomics profile may help shape the future of early diagnosis or prevention efforts

    Cooperative Activity of BRG1 and Z-DNA Formation in Chromatin Remodeling

    No full text
    The mammalian genome contains tens of thousands of CG and TG repeat sequences that have high potential to form the nonclassical left-handed double-helical Z-DNA structure. Previously we showed that activation of the colony-stimulating factor 1 (CSF1) gene by the chromatin remodeling enzyme, BRG1, results in formation of Z-DNA at the TG repeat sequence located within the promoter. In this report, we show that the TG repeats are assembled in a positioned nucleosome in the silent CSF1 promoter and that activation by BRG1 disrupts this nucleosome and results in Z-DNA formation. Active transcription is not required for the formation of Z-DNA but does result in an expanded region of Z-DNA. Formation of sequences by both BRG1 and the Z-DNA is required for effective chromatin remodeling of the CSF1 promoter. We propose the Z-DNA formation induced by BRG1 promotes a transition from a transient and partial remodeling to a more extensive disruption of the canonical nucleosomal structure. The data presented in this report establish that Z-DNA formation is an important mechanism in modulating chromatin structure, in similarity to the activities of ATP-dependent remodelers and posttranslational histone modifications

    Regulation of Polycomb group complexes by the sequence-specific DNA binding proteins Zeste and GAGA

    No full text
    Repression and activation of the expression of homeotic genes are maintained by proteins encoded by the Polycomb group (PcG) and trithorax group (trxG) genes. Complexes formed by these proteins are targeted by PcG or trxG response elements (PREs/TREs), which share binding sites for several of the same factors. GAGA factor and Zeste bind specifically to PREs/TREs and have been shown to act as both activators and repressors. We have used purified proteins and complexes reconstituted from recombinant subunits to characterize the effects of GAGA and Zeste proteins on PcG function using a defined in vitro system. Zeste directly associates withthe PRC1 core complex (PCC) and enhances the inhibitory activity of this complex on all templates, with a preference for templates withZeste binding sites. GAGA does not stably associate with PCC, but nucleosomal templates bound by GAGA are more efficiently bound and more efficiently inhibited by PCC. Thus Zeste and GAGA factor use distinct means to increase repression mediated by PRC1

    Comprehensive Biothreat Cluster Identification by PCR/Electrospray-Ionization Mass Spectrometry

    Get PDF
    <div><p>Technology for comprehensive identification of biothreats in environmental and clinical specimens is needed to protect citizens in the case of a biological attack. This is a challenge because there are dozens of bacterial and viral species that might be used in a biological attack and many have closely related near-neighbor organisms that are harmless. The biothreat agent, along with its near neighbors, can be thought of as a <em>biothreat cluster</em> or a <em>biocluster</em> for short. The ability to comprehensively detect the important biothreat clusters with resolution sufficient to distinguish the near neighbors with an extremely low false positive rate is required. A technological solution to this problem can be achieved by coupling biothreat group-specific PCR with electrospray ionization mass spectrometry (PCR/ESI-MS). The biothreat assay described here detects ten bacterial and four viral biothreat clusters on the NIAID priority pathogen and HHS/USDA select agent lists. Detection of each of the biothreat clusters was validated by analysis of a broad collection of biothreat organisms and near neighbors prepared by spiking biothreat nucleic acids into nucleic acids extracted from filtered environmental air. Analytical experiments were carried out to determine breadth of coverage, limits of detection, linearity, sensitivity, and specificity. Further, the assay breadth was demonstrated by testing a diverse collection of organisms from each biothreat cluster. The biothreat assay as configured was able to detect all the target organism clusters and did not misidentify any of the near-neighbor organisms as threats. Coupling biothreat cluster-specific PCR to electrospray ionization mass spectrometry simultaneously provides the breadth of coverage, discrimination of near neighbors, and an extremely low false positive rate due to the requirement that an amplicon with a precise base composition of a biothreat agent be detected by mass spectrometry.</p> </div
    corecore