86 research outputs found

    In vitro human embryonic stem cell hematopoiesis mimics MYB-independent yolk sac hematopoiesis

    Get PDF
    Although hematopoietic precursor activity can be generated in vitro from human embryonic stem cells, there is no solid evidence for the appearance of multipotent, self-renewing and transplantable hematopoietic stem cells. This could be due to short half-life of hematopoietic stem cells in culture or, alternatively, human embryonic stem cellinitiated hematopoiesis may be hematopoietic stem cell-independent, similar to yolk sac hematopoiesis, generating multipotent progenitors with limited expansion capacity. Since a MYB was reported to be an excellent marker for hematopoietic stem cell-dependent hematopoiesis, we generated a MYB-eGFP reporter human embryonic stem cell line to study formation of hematopoietic progenitor cells in vitro. We found CD34(+) hemogenic endothelial cells rounding up and developing into CD43(+) hematopoietic cells without expression of MYB-eGFP. MYB-eGFP+ cells appeared relatively late in embryoid body cultures as CD34(+) CD43(+) CD45(-/lo) cells. These MYB-eGFP(+) cells were CD33 positive, proliferated in IL-3 containing media and hematopoietic differentiation was restricted to the granulocytic lineage. In agreement with data obtained on murine Myb(-/-) embryonic stem cells, bright eGFP expression was observed in a subpopulation of cells, during directed myeloid differentiation, which again belonged to the granulocytic lineage. In contrast, CD14(+) macrophage cells were consistently eGFP-and were derived from eGFPprecursors only. In summary, no evidence was obtained for in vitro generation of MYB+ hematopoietic stem cells during embryoid body cultures. The observed MYB expression appeared late in culture and was confined to the granulocytic lineage

    Unravelling the skillset of point-of-care ultrasound:a systematic review

    Get PDF
    Background: The increasing number of physicians that are trained in point-of-care ultrasound (POCUS) warrants critical evaluation and improvement of current training methods. Performing POCUS is a complex task and it is unknown which (neuro)cognitive mechanisms are most important in competence development of this skill. This systematic review was conducted to identify determinants of POCUS competence development that can be used to optimize POCUS training. Methods: PubMed, Web of Science, Cochrane Library, Emcare, PsycINFO and ERIC databases were searched for studies measuring ultrasound (US) skills and aptitude. The papers were divided into three categories: “Relevant knowledge”, “Psychomotor ability” and ‘Visuospatial ability’. The ‘Relevant knowledge’ category was further subdivided in ‘image interpretation’, ‘technical aspects’ and ‘general cognitive abilities’. Visuospatial ability was subdivided in visuospatial subcategories based on the Cattell-Horn-Carroll (CHC) Model of Intelligence v2.2, which includes visuospatial manipulation and visuospatial perception. Post-hoc, a meta-analysis was performed to calculate pooled correlations. Results: 26 papers were selected for inclusion in the review. 15 reported on relevant knowledge with a pooled coefficient of determination of 0.26. Four papers reported on psychomotor abilities, one reported a significant relationship with POCUS competence. 13 papers reported on visuospatial abilities, the pooled coefficient of determination was 0.16.Conclusion: There was a lot of heterogeneity in methods to assess possible determinants of POCUS competence and POCUS competence acquisition. This makes it difficult to draw strong conclusions on which determinants should be part of a framework to improve POCUS education. However, we identified two determinants of POCUS competence development: relevant knowledge and visuospatial ability. The content of relevant knowledge could not be retrieved in more depth. For visuospatial ability we used the CHC model as theoretical framework to analyze this skill. We could not point out psychomotor ability as a determinant of POCUS competence.</p

    Unravelling the skillset of point-of-care ultrasound:a systematic review

    Get PDF
    Background: The increasing number of physicians that are trained in point-of-care ultrasound (POCUS) warrants critical evaluation and improvement of current training methods. Performing POCUS is a complex task and it is unknown which (neuro)cognitive mechanisms are most important in competence development of this skill. This systematic review was conducted to identify determinants of POCUS competence development that can be used to optimize POCUS training. Methods: PubMed, Web of Science, Cochrane Library, Emcare, PsycINFO and ERIC databases were searched for studies measuring ultrasound (US) skills and aptitude. The papers were divided into three categories: “Relevant knowledge”, “Psychomotor ability” and ‘Visuospatial ability’. The ‘Relevant knowledge’ category was further subdivided in ‘image interpretation’, ‘technical aspects’ and ‘general cognitive abilities’. Visuospatial ability was subdivided in visuospatial subcategories based on the Cattell-Horn-Carroll (CHC) Model of Intelligence v2.2, which includes visuospatial manipulation and visuospatial perception. Post-hoc, a meta-analysis was performed to calculate pooled correlations. Results: 26 papers were selected for inclusion in the review. 15 reported on relevant knowledge with a pooled coefficient of determination of 0.26. Four papers reported on psychomotor abilities, one reported a significant relationship with POCUS competence. 13 papers reported on visuospatial abilities, the pooled coefficient of determination was 0.16.Conclusion: There was a lot of heterogeneity in methods to assess possible determinants of POCUS competence and POCUS competence acquisition. This makes it difficult to draw strong conclusions on which determinants should be part of a framework to improve POCUS education. However, we identified two determinants of POCUS competence development: relevant knowledge and visuospatial ability. The content of relevant knowledge could not be retrieved in more depth. For visuospatial ability we used the CHC model as theoretical framework to analyze this skill. We could not point out psychomotor ability as a determinant of POCUS competence.</p

    Genetic determinants of thyroid function in children

    Get PDF
    OBJECTIVE:Genome-wide association studies in adults have identified 42 loci associated with thyroid stimulating hormone (TSH) and 21 loci associated with free thyroxine (FT4) concentrations. While biologically plausible, age-dependent effects have not been assessed. We aimed to study the association of previously identified genetic determinants of TSH and FT4 with TSH and FT4 concentrations in newborns and (pre)school children. METHODS: We selected participants from three population-based prospective cohorts with data on genetic variants and thyroid function: Generation R (N = 2169 children, mean age 6 years; N = 2388 neonates, the Netherlands), the Avon Longitudinal Study of Parents and Children (ALSPAC; N = 3382, age 7.5 years, United Kingdom), and the Brisbane Longitudinal Twin Study (BLTS; N = 1680, age 12.1 years, Australia). The association of single nucleotide polymorphisms (SNPs) with TSH and FT4 concentrations was studied with multivariable linear regression models. Weighted polygenic risk scores (PRSs) were defined to combine SNP effects.RESULTS:In childhood, 30/60 SNPs were associated with TSH and 11/31 SNPs with FT4 after multiple testing correction. The effect sizes for AADAT, GLIS3, TM4SF4, and VEGFA were notably larger than in adults. The TSH PRS explained 5.3%-8.4% of the variability in TSH concentrations; the FT4 PRS explained 1.5%-4.2% of the variability in FT4 concentrations. Five TSH SNPs and no FT4 SNPs were associated with thyroid function in neonates. CONCLUSIONS: The effects of many known thyroid function SNPs are already apparent in childhood and some might be notably larger in children as compared to adults. These findings provide new knowledge about genetic regulation of thyroid function in early life.</p

    The transcription factor ETS1 is an important regulator of human NK cell development and terminal differentiation

    Get PDF
    Natural killer (NK) cells are important in the immune defense against tumor cells and pathogens, and regulate other immune cells by cytokine secretion. Whereas murine NK cell biology has been extensively studied, knowledge about transcriptional circuitries controlling human NK cell development and maturation is limited. By generating ETS1-deficient human embryonic stem cells (hESC) and by expressing the dominant-negative ETS1 p27 isoform in cord blood (CB) hematopoietic progenitor cells (HPCs), we show that the transcription factor ETS1 is critically required for human NK cell differentiation. Genome-wide transcriptome analysis determined by RNA-sequencing combined with chromatin immunoprecipitation-sequencing (ChIP-seq) analysis reveals that human ETS1 directly induces expression of key transcription factors that control NK cell differentiation, i.e. E4BP4, TXNIP, TBET, GATA3, HOBIT and BLIMP1. In addition, ETS1 regulates expression of genes involved in apoptosis and NK cell activation. Our study provides important molecular insights into the role of ETS1 as an important regulator of human NK cell development and terminal differentiation

    GATA3 induces human T-cell commitment by restraining Notch activity and repressing NK-cell fate

    Get PDF
    The gradual reprogramming of haematopoietic precursors into the T-cell fate is characterized by at least two sequential developmental stages. Following Notch1-dependent T-cell lineage specification during which the first T-cell lineage genes are expressed and myeloid and dendritic cell potential is lost, T-cell specific transcription factors subsequently induce T-cell commitment by repressing residual natural killer (NK)-cell potential. How these processes are regulated in human is poorly understood, especially since efficient T-cell lineage commitment requires a reduction in Notch signalling activity following T-cell specification. Here, we show that GATA3, in contrast to TCF1, controls human T-cell lineage commitment through direct regulation of three distinct processes: repression of NK-cell fate, upregulation of T-cell lineage genes to promote further differentiation and restraint of Notch activity. Repression of the Notch1 target gene DTX1 hereby is essential to prevent NK-cell differentiation. Thus, GATA3-mediated positive and negative feedback mechanisms control human T-cell lineage commitment
    • 

    corecore