13 research outputs found

    Australian vegetation classification and the International Vegetation Classification framework: an overview with case studies

    Get PDF
    Recent advances in conceptual frameworks in vegetation classifications, such as the EcoVeg approach that underpins the International Vegetation Classification (IVC) developed by NatureServe staff and colleagues, offer opportunities to enhance national classification initiatives. National level initiatives provide an important stepping-stone between international units and subnational units. Australia has a long history of developing various vegetation typologies at local to regional scales, but ecologists recognise the need for an Australia-wide, plot-based vegetation classification system that incorporates the principles of the EcoVeg approach, and thereby helps build an international classification system. Using two case studies, we provide a comparison of various structures and criteria for relevant Australian classifications in the context of the IVC, and exemplify how Australian classifications of forest, shrublands, grasslands, and deserts could potentially link into the IVC hierarchy to illustrate the capacity of the IVC to summarise the full range of Australian vegetation at a broad formation (biome) scale. We then discuss how the IVC might inform future work towards an Australian vegetation classification system and, vice versa, the implications of an Australian vegetation classification for IVC development

    Assessing the Climate Change Vulnerability of Ecosystem Types of the Southwestern U.S.

    Get PDF
    Climate change is challenging scientists and decision-makers to understand the complexities of climate change and to predict the related effects at scales relevant to environmental policy and the management of ecosystem services. Extraordinary change in climate, and the ensuing impacts to ecosystem services, are widely anticipated for the southwestern United States. Predicting the vulnerability of Southwest ecosystems and their components has been a priority of natural resource organizations over the past decade. Supplementing vulnerability assessments in the region with geospatial inputs of high thematic and spatial detail has become vital for supporting local analyses, planning, and decisions. In this context has come the opportunity to build upon a framework of major ecosystem types of the Southwest and to assess vulnerability to climate change for each type. Herein are presented three studies that set the backdrop for vulnerability assessment, detail a novel correlative modeling procedure to predict the location and the magnitude of vulnerability to familiar vegetation patterns, and then explore applications of the resulting geospatial vulnerability surface: 1) considerations for evaluating or designing a vulnerability assessment; 2) an overview of the vegetation and climate of major ecosystem types, and 3) a climate change vulnerability assessment for all major ecosystem types of the Southwest. This work has resulted in a regionwide vulnerability surface of greater extent and higher spatial and thematic resolution than previous modeling efforts, giving local managers information on the location and degree of climate risk to vegetation resources

    A classification of forest habitat types of the southern Arizona and portions of the Colorado Plateau /

    No full text

    Consolidated stand tables and biodiversity data base for Southwestern forest habitat types /

    No full text

    Consolidated stand tables and biodiversity data base for Southwestern forest habitat types /

    No full text
    no.19

    A classification of forest habitat types of the southern Arizona and portions of the Colorado Plateau /

    No full text
    no.28

    Historical and modern disturbance regimes, stand structures, and landscape dynamics in piñon-juniper vegetation of the western United States

    No full text
    Piñon–juniper is a major vegetation type in western North America. Effective management of these ecosystems has been hindered by inadequate understanding of 1) the variability in ecosystem structure and ecological processes that exists among the diverse combinations of piñons, junipers, and associated shrubs, herbs, and soil organisms; 2) the prehistoric and historic disturbance regimes; and 3) the mechanisms driving changes in vegetation structure and composition during the past 150 yr. This article summarizes what we know (and don\u27t know) about three fundamentally different kinds of piñon–juniper vegetation. Persistent woodlands are found where local soils, climate, and disturbance regimes are favorable for piñon, juniper, or a mix of both; fires have always been infrequent in these woodlands. Piñon–juniper savannas are found where local soils and climate are suitable for both trees and grasses; it is logical that low-severity fires may have maintained low tree densities before disruption of fire regimes following Euro-American settlement, but information is insufficient to support any confident statements about historical disturbance regimes in these savannas. Wooded shrublands are found where local soils and climate support a shrub community, but trees can increase during moist climatic conditions and periods without disturbance and decrease during droughts and following disturbance. Dramatic increases in tree density have occurred in portions of all three types of piñon–juniper vegetation, although equally dramatic mortality events have also occurred in some areas. The potential mechanisms driving increases in tree density—such as recovery from past disturbance, natural range expansion, livestock grazing, fire exclusion, climatic variability, and CO2 fertilization—generally have not received enough empirical or experimental investigation to predict which is most important in any given location. The intent of this synthesis is 1) to provide a source of information for managers and policy makers; and 2) to stimulate researchers to address the most important unanswered questions
    corecore