25 research outputs found

    Quadruplex digital flight control system assessment

    Get PDF
    Described are the development and validation of a double fail-operational digital flight control system architecture for critical pitch axis functions. Architectural tradeoffs are assessed, system simulator modifications are described, and demonstration testing results are critiqued. Assessment tools and their application are also illustrated. Ultimately, the vital role of system simulation, tailored to digital mechanization attributes, is shown to be essential to validating the airworthiness of full-time critical functions such as augmented fly-by-wire systems for relaxed static stability airplanes

    Analytical sensor redundancy assessment

    Get PDF
    The rationale and mechanization of sensor fault tolerance based on analytical redundancy principles are described. The concept involves the substitution of software procedures, such as an observer algorithm, to supplant additional hardware components. The observer synthesizes values of sensor states in lieu of their direct measurement. Such information can then be used, for example, to determine which of two disagreeing sensors is more correct, thus enhancing sensor fault survivability. Here a stability augmentation system is used as an example application, with required modifications being made to a quadruplex digital flight control system. The impact on software structure and the resultant revalidation effort are illustrated as well. Also, the use of an observer algorithm for wind gust filtering of the angle-of-attack sensor signal is presented
    corecore