683 research outputs found

    The appendage role of insect disco genes and possible implications on the evolution of the maggot larval form

    Get PDF
    AbstractThough initially identified as necessary for neural migration, Disconnected and its partially redundant paralog, Disco-related, are required for proper head segment identity during Drosophila embryogenesis. Here, we present evidence that these genes are also required for proper ventral appendage development during development of the adult fly, where they specify medial to distal appendage development. Cells lacking the disco genes cannot contribute to the medial and distal portions of ventral appendages. Further, ectopic disco transforms dorsal appendages toward ventral fates; in wing discs, the medial and distal leg development pathways are activated. Interestingly, this appendage role is conserved in the red flour beetle, Tribolium (where legs develop during embryogenesis), yet in the beetle we found no evidence for a head segmentation role. The lack of an embryonic head specification role in Tribolium could be interpreted as a loss of the head segmentation function in Tribolium or gain of this function during evolution of flies. However, we suggest an alternative explanation. We propose that the disco genes always function as appendage factors, but their appendage nature is masked during Drosophila embryogenesis due to the reduction of limb fields in the maggot style Drosophila larva

    Penrose Limits and Non-local theories

    Full text link
    We investigate Penrose limits of two classes of non-local theories, little string theories and non-commutative gauge theories. Penrose limits of the near-horizon geometry of NS5-branes help to shed some light on the high energy spectrum of little string theories. We attempt to understand renormalization group flow in these theories by considering Penrose limits wherein the null geodesic also has a radial component. In particular, we demonstrate that it is possible to construct a pp-wave spacetime which interpolates between the linear dilaton and the AdS regions for the Type IIA NS5-brane. Similar analysis is considered for the holographic dual geometry to non-commutative field theories.Comment: 27 pages, LaTeX; v2: added reference

    Observation of Caustics in the Trajectories of Cold Atoms in a Linear Magnetic Potential

    Full text link
    We have studied the spatial and temporal dynamics of a cold atom cloud in the conservative force field of a ferromagnetic guide, after laser cooling has been switched off suddenly. We observe outgoing 'waves' that correspond to caustics of individual trajectories of trapped atoms. This provides detailed information on the magnetic field, the energy distribution and the spin states.Comment: 21 pages, incl. 12 figure

    First demonstration of neural sensing and control in a kilometer-scale gravitational wave observatory

    Get PDF
    Suspended optics in gravitational wave (GW) observatories are susceptible toalignment perturbations and, in particular, to slow drifts over time due tovariations in temperature and seismic levels. Such misalignments affect thecoupling of the incident laser beam into the optical cavities, degrade bothcirculating power and optomechanical photon squeezing, and thus decrease theastrophysical sensitivity to merging binaries. Traditional alignment techniquesinvolve differential wavefront sensing using multiple quadrant photodiodes, butare often restricted in bandwidth and are limited by the sensing noise. Wepresent the first-ever successful implementation of neural network-basedsensing and control at a gravitational wave observatory and demonstratelow-frequency control of the signal recycling mirror at the GEO 600 detector.Alignment information for three critical optics is simultaneously extractedfrom the interferometric dark port camera images via a CNN-LSTM networkarchitecture and is then used for MIMO control using soft actor-critic-baseddeep reinforcement learning. Overall sensitivity improvement achieved using ourscheme demonstrates deep learning's capabilities as a viable tool for real-timesensing and control for current and next-generation GW interferometers.<br

    Assessment of genetic diversity among Malnad Gidda, Punganur and Vechur-dwarf cattle breeds of India using microsatellite markers

    Get PDF
    The genetic diversity among 3 dwarf breeds of cattle in India, viz. Malnad Gidda, Punganur and Vechur were analysed using 12 sets of microsatellite markers. All 11 amplified microsatellite loci were polymorphic with a mean number of alleles of 7.818±1.66 across breeds and in different breeds it ranged from 7.273 in Malnad Gidda to 3.546 in Vechur. The mean polymorphic information content (PIC) value observed and expected heterozygosity values across the population were 0.642, 0.610 and 0.683, respectively. A moderate level of inbreeding was observed with the inbreeding estimates ranging from -0.027 (ILSTS6) to 0.271 (HAUT24). Among the 3 breeds the highest mean number of alleles (7.273), mean PIC value (0.639), observed heterozygosity (0.630) and lower inbreeding estimates at majority of loci were observed in Malnad Gidda cattle indicating high degree of heterozygosity compared to Punganur and Vechur breeds. Even though departure from Hardy Weinberg Equilibrium (HWE) was found in Vechur and Punganur cattle population at majority of the loci, the population combining the 3 breeds was maintained at HWE with respect to most of loci under study. The genetic distance analysis revealed highest genetic distance between Vechur and Punganur (0.331) and lowest between Malnad Gidda and Punganur (0.125)

    European and Mediterranean hydroclimate responses to tropical volcanic forcing over the last millennium

    Get PDF
    Volcanic eruptions have global climate impacts, but their effect on the hydrologic cycle is poorly understood. We use a modified version of superposed epoch analysis, an eruption year list collated from multiple data sets, and seasonal paleoclimate reconstructions (soil moisture, precipitation, geopotential heights, and temperature) to investigate volcanic forcing of spring and summer hydroclimate over Europe and the Mediterranean over the last millennium. In the western Mediterranean, wet conditions occur in the eruption year and the following 3 years. Conversely, northwestern Europe and the British Isles experience dry conditions in response to volcanic eruptions, with the largest moisture deficits in posteruption years 2 and 3. The precipitation response occurs primarily in late spring and early summer (April–July), a pattern that strongly resembles the negative phase of the East Atlantic Pattern. Modulated by this mode of climate variability, eruptions force significant, widespread, and heterogeneous hydroclimate responses across Europe and the Mediterranean

    Structural Analysis of Biodiversity

    Get PDF
    Large, recently-available genomic databases cover a wide range of life forms, suggesting opportunity for insights into genetic structure of biodiversity. In this study we refine our recently-described technique using indicator vectors to analyze and visualize nucleotide sequences. The indicator vector approach generates correlation matrices, dubbed Klee diagrams, which represent a novel way of assembling and viewing large genomic datasets. To explore its potential utility, here we apply the improved algorithm to a collection of almost 17000 DNA barcode sequences covering 12 widely-separated animal taxa, demonstrating that indicator vectors for classification gave correct assignment in all 11000 test cases. Indicator vector analysis revealed discontinuities corresponding to species- and higher-level taxonomic divisions, suggesting an efficient approach to classification of organisms from poorly-studied groups. As compared to standard distance metrics, indicator vectors preserve diagnostic character probabilities, enable automated classification of test sequences, and generate high-information density single-page displays. These results support application of indicator vectors for comparative analysis of large nucleotide data sets and raise prospect of gaining insight into broad-scale patterns in the genetic structure of biodiversity

    The rise of fully turbulent flow

    Full text link
    Over a century of research into the origin of turbulence in wallbounded shear flows has resulted in a puzzling picture in which turbulence appears in a variety of different states competing with laminar background flow. At slightly higher speeds the situation changes distinctly and the entire flow is turbulent. Neither the origin of the different states encountered during transition, nor their front dynamics, let alone the transformation to full turbulence could be explained to date. Combining experiments, theory and computer simulations here we uncover the bifurcation scenario organising the route to fully turbulent pipe flow and explain the front dynamics of the different states encountered in the process. Key to resolving this problem is the interpretation of the flow as a bistable system with nonlinear propagation (advection) of turbulent fronts. These findings bridge the gap between our understanding of the onset of turbulence and fully turbulent flows.Comment: 31 pages, 9 figure

    CFT dual of the AdS Dirichlet problem: Fluid/Gravity on cut-off surfaces

    Full text link
    We study the gravitational Dirichlet problem in AdS spacetimes with a view to understanding the boundary CFT interpretation. We define the problem as bulk Einstein's equations with Dirichlet boundary conditions on fixed timelike cut-off hypersurface. Using the fluid/gravity correspondence, we argue that one can determine non-linear solutions to this problem in the long wavelength regime. On the boundary we find a conformal fluid with Dirichlet constitutive relations, viz., the fluid propagates on a `dynamical' background metric which depends on the local fluid velocities and temperature. This boundary fluid can be re-expressed as an emergent hypersurface fluid which is non-conformal but has the same value of the shear viscosity as the boundary fluid. The hypersurface dynamics arises as a collective effect, wherein effects of the background are transmuted into the fluid degrees of freedom. Furthermore, we demonstrate that this collective fluid is forced to be non-relativistic below a critical cut-off radius in AdS to avoid acausal sound propagation with respect to the hypersurface metric. We further go on to show how one can use this set-up to embed the recent constructions of flat spacetime duals to non-relativistic fluid dynamics into the AdS/CFT correspondence, arguing that a version of the membrane paradigm arises naturally when the boundary fluid lives on a background Galilean manifold.Comment: 71 pages, 2 figures. v2: Errors in bulk metrics dual to non-relativistic fluids (both on cut-off surface and on the boundary) have been corrected. New appendix with general results added. Fixed typos. 82 pages, 2 figure

    Implications of Dedicated Seismometer Measurements on Newtonian-Noise Cancellation for Advanced LIGO

    Get PDF
    Newtonian gravitational noise from seismic fields will become a limiting noise source at low frequency for second-generation, gravitational-wave detectors. It is planned to use seismic sensors surrounding the detectors’ test masses to coherently subtract Newtonian noise using Wiener filters derived from the correlations between the sensors and detector data. In this Letter, we use data from a seismometer array deployed at the corner station of the Laser Interferometer Gravitational Wave Observatory (LIGO) Hanford detector combined with a tiltmeter for a detailed characterization of the seismic field and to predict achievable Newtonian-noise subtraction levels. As was shown previously, cancellation of the tiltmeter signal using seismometer data serves as the best available proxy of Newtonian-noise cancellation. According to our results, a relatively small number of seismometers is likely sufficient to perform the noise cancellation due to an almost ideal two-point spatial correlation of seismic surface displacement at the corner station, or alternatively, a tiltmeter deployed under each of the two test masses of the corner station at Hanford will be able to efficiently cancel Newtonian noise. Furthermore, we show that the ground tilt to differential arm-length coupling observed during LIGO’s second science run is consistent with gravitational coupling
    • …
    corecore