62 research outputs found
Stimulation of Myofibrillar Protein Synthesis in Hindlimb Suspended Rats by Resistance Exercise and Growth Hormone
The objective of this study was to determine the ability of a single bout of resistance exercise alone or in combination with recombinant human growth hormone (rhGH) to stimulate myofibrillar protein synthesis (Ks) in hindlimb suspended (HLS) adult female rats. Plantar flexor muscles were stimulated with resistance exercise, consisting of 10 repetitions of ladder climbing on a 1 m grid (85 deg.), carrying an additional 50% of their body weight attached to their tails. Saline or rhGH (1 mg/kg) was administered 30' prior to exercise, and Ks was determined with a constant infusion of H-3-Leucine at 15', 60', 180', and 360' following exercise. Three days of HLS depressed Ks is approx. equal to 65% and 30-40% in the soleus and gastrocnemius muscles, respectively (p is less than or equal to 0.05). Exercise increased soleus Ks in saline-treated rats 149% 60' following exercise (p less than or equal to 0.05), decaying to that of non-exercised animals during the next 5 hours. Relative to suspended, non-exercised rats rhGH + exercise increased soleus Ks 84%, 108%, and 72% at 15', 60' and 360' following exercise (p is less than or equal to 0.05). Gastrocnemius Ks was not significantly increased by exercise or the combination of rhGH and exercise up to 360' post-exercise. Results from this study indicate that resistance exercise stimulated Ks 60' post-exercise in the soleus of HLS rats, with no apparent effect of rhGH to enhance or prolong exercise-induced stimulation. Results suggests that exercise frequency may be important to maintenance of the slow-twitch soleus during non-weightbearing, but that the ability of resistance exercise to maintain myofibrillar protein content in the gastrocnemius of hindlimb suspended rats cannot be explained by acute stimulation of synthesis
Quantum Chaos in Compact Lattice QED
Complete eigenvalue spectra of the staggered Dirac operator in quenched
compact QED are studied on and lattices. We
investigate the behavior of the nearest-neighbor spacing distribution as
a measure of the fluctuation properties of the eigenvalues in the strong
coupling and the Coulomb phase. In both phases we find agreement with the
Wigner surmise of the unitary ensemble of random-matrix theory indicating
quantum chaos. Combining this with previous results on QCD, we conjecture that
quite generally the non-linear couplings of quantum field theories lead to a
chaotic behavior of the eigenvalues of the Dirac operator.Comment: 11 pages, 4 figure
On the Connection Between Momentum Cutoff and Operator Cutoff Regularizations
Operator cutoff regularization based on the original Schwinger's proper-time
formalism is examined. By constructing a regulating smearing function for the
proper-time integration, we show how this regularization scheme simulates the
usual momentum cutoff prescription yet preserves gauge symmetry even in the
presence of the cutoff scales. Similarity between the operator cutoff
regularization and the method of higher (covariant) derivatives is also
observed. The invariant nature of the operator cutoff regularization makes it a
promising tool for exploring the renormalization group flow of gauge theories
in the spirit of Wilson-Kadanoff blocking transformation.Comment: 28 pages in plain TeX, no figures. revised and expande
Poincare gauge theory of gravity: Friedman cosmology with even and odd parity modes. Analytic part
We propose a cosmological model in the framework of the Poincar\'e gauge
theory of gravity (PG). The gravitational Lagrangian is quadratic in curvature
and torsion. In our specific model, the Lagrangian contains (i) the curvature
scalar and the curvature pseudo-scalar linearly and quadratically
(including an term) and (ii) pieces quadratic in the torsion {\it vector}
and the torsion {\it axial} vector (including a term). We show generally that in quadratic PG models we have nearly
the same number of parity conserving terms (`world') and of parity violating
terms (`shadow world'). This offers new perspectives in cosmology for the
coupling of gravity to matter and antimatter. Our specific model generalizes
the fairly realistic `torsion cosmologies' of Shie-Nester-Yo (2008) and Chen et
al.\ (2009). With a Friedman type ansatz for an orthonormal coframe and a
Lorentz connection, we derive the two field equations of PG in an explicit form
and discuss their general structure in detail. In particular, the second field
equation can be reduced to first order ordinary differential equations for the
curvature pieces and . Including these along with certain
relations obtained from the first field equation and curvature definitions, we
present a first order system of equations suitable for numerical evaluation.
This is deferred to the second, numerical part of this paper.Comment: Latex computerscript, 25 pages; mistakes corrected, references added,
notation and title slightly changed; accepted by Phys. Rev.
Beyond Einstein-Cartan gravity: Quadratic torsion and curvature invariants with even and odd parity including all boundary terms
Recently, gravitational gauge theories with torsion have been discussed by an
increasing number of authors from a classical as well as from a quantum field
theoretical point of view. The Einstein-Cartan(-Sciama-Kibble) Lagrangian has
been enriched by the parity odd pseudoscalar curvature (Hojman, Mukku, and
Sayed) and by torsion square and curvature square pieces, likewise of even and
odd parity. (i) We show that the inverse of the so-called Barbero-Immirzi
parameter multiplying the pseudoscalar curvature, because of the topological
Nieh-Yan form, can only be appropriately discussed if torsion square pieces are
included. (ii) The quadratic gauge Lagrangian with both parities, proposed by
Obukhov et al. and Baekler et al., emerges also in the framework of Diakonov et
al.(2011). We establish the exact relations between both approaches by applying
the topological Euler and Pontryagin forms in a Riemann-Cartan space expressed
for the first time in terms of irreducible pieces of the curvature tensor.
(iii) Only in a Riemann-Cartan spacetime, that is, in a spacetime with torsion,
parity violating terms can be brought into the gravitational Lagrangian in a
straightforward and natural way. Accordingly, Riemann-Cartan spacetime is a
natural habitat for chiral fermionic matter fields.Comment: 12 page latex, as version 2 an old file was submitted by mistake,
this is now the real corrected fil
From QFT to DCC
A quantum field theoretical model for the dynamics of the disoriented chiral
condensate is presented. A unified approach to relate the quantum field theory
directly to the formation, decay and signals of the DCC and its evolution is
taken. We use a background field analysis of the O(4) sigma model keeping
one-loop quantum corrections (quadratic order in the fluctuations). An
evolution of the quantum fluctuations in an external, expanding metric which
simulates the expansion of the plasma, is carried out. We examine, in detail,
the amplification of the low momentum pion modes with two competing effects,
the expansion rate of the plasma and the transition rate of the vacuum
configuration from a metastable state into a stable state.We show the effect of
DCC formation on the multiplicity distributions and the Bose-Einstein
correlations.Comment: 34 pages, 10 figure
How does the electromagnetic field couple to gravity, in particular to metric, nonmetricity, torsion, and curvature?
The coupling of the electromagnetic field to gravity is an age-old problem.
Presently, there is a resurgence of interest in it, mainly for two reasons: (i)
Experimental investigations are under way with ever increasing precision, be it
in the laboratory or by observing outer space. (ii) One desires to test out
alternatives to Einstein's gravitational theory, in particular those of a
gauge-theoretical nature, like Einstein-Cartan theory or metric-affine gravity.
A clean discussion requires a reflection on the foundations of electrodynamics.
If one bases electrodynamics on the conservation laws of electric charge and
magnetic flux, one finds Maxwell's equations expressed in terms of the
excitation H=(D,H) and the field strength F=(E,B) without any intervention of
the metric or the linear connection of spacetime. In other words, there is
still no coupling to gravity. Only the constitutive law H= functional(F)
mediates such a coupling. We discuss the different ways of how metric,
nonmetricity, torsion, and curvature can come into play here. Along the way, we
touch on non-local laws (Mashhoon), non-linear ones (Born-Infeld,
Heisenberg-Euler, Plebanski), linear ones, including the Abelian axion (Ni),
and find a method for deriving the metric from linear electrodynamics (Toupin,
Schoenberg). Finally, we discuss possible non-minimal coupling schemes.Comment: Latex2e, 26 pages. Contribution to "Testing Relativistic Gravity in
Space: Gyroscopes, Clocks, Interferometers ...", Proceedings of the 220th
Heraeus-Seminar, 22 - 27 August 1999 in Bad Honnef, C. Laemmerzahl et al.
(eds.). Springer, Berlin (2000) to be published (Revised version uses
Springer Latex macros; Sec. 6 substantially rewritten; appendices removed;
the list of references updated
Minimal coupling of electromagnetic field in Riemann-Cartan spacetime for perfect fluids
We minimally couple the electromagnetic field to gravity in Riemann-Cartan spacetime in the self-consistent formalism for perfect fluids by treating the internal energy of matter as a function of the electromagnetic field. The overall Lagrangian of the gravitational field, perfect fluid, and the electromagnetic field is constrained to be gauge invariant under gauge transformations of the vector potential. The theory preserves both charge conservation and particle number conservation, and gives the usual form of the free field equations.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44578/1/10773_2004_Article_BF00673926.pd
Resistance exercise and growth hormone as countermeasures for skeletal muscle atrophy in hindlimb-suspended rats
Unweighting of rat hindlimb muscles results in skeletal muscle atrophy, decreased protein synthesis, and reduced growth hormone (GH) secretion. Resistance exercise (ladder climbing) and GH treatment partially attenuate skeletal muscle atrophy in hypophysectomized hindlimb-suspended rats. It was hypothesized that a combination of multiple bouts of daily resistance exercise and GH (1 mg.kg-1.day-1) would prevent skeletal muscle atrophy in growing nonhypophysectomized hindlimb-suspended rats. Hindlimb suspension decreased the absolute (mg/pair) and relative (mg/100 g body wt) weights of the soleus, a slow-twitch plantar flexor, by 30 and 21%, respectively, and the absolute and relative weights of the gastrocnemius, a predominantly fast-twitch plantar flexor, by 20 and 11%, respectively (P \u3c 0.05). Exercise did not increase soleus mass but attenuated loss of relative wet weight in the gastrocnemius muscles of hindlimb-suspended rats (P \u3c 0.05). Hindlimb suspension decreased gastrocnemius myofibrillar protein content and synthesis (mg/day) by 26 and 64%, respectively (P \u3c 0.05). The combination of exercise and GH attenuated loss of gastrocnemius myofibrillar protein content and synthesis by 70 and 23%, respectively (P \u3c 0.05). Results of the present investigation indicate that a combination of GH and resistance exercise attenuates atrophy of unweighted fast-twitch skeletal muscles
- …