37 research outputs found

    Modulation of Cytochrome P450 Metabolism and Transport across Intestinal Epithelial Barrier by Ginger Biophenolics

    Get PDF
    Natural and complementary therapies in conjunction with mainstream cancer care are steadily gaining popularity. Ginger extract (GE) confers significant health-promoting benefits owing to complex additive and/or synergistic interactions between its bioactive constituents. Recently, we showed that preservation of natural ‘‘milieu’’ confers superior anticancer activity on GE over its constituent phytochemicals, 6-gingerol (6G), 8-gingerol (8G), 10-gingerol (10G) and 6-shogaol (6S), through enterohepatic recirculation. Here we further evaluate and compare the effects of GE and its major bioactive constituents on cytochrome P450 (CYP) enzyme activity in human liver microsomes by monitoring metabolites of CYPspecific substrates using LC/MS/MS detection methods. Our data demonstrate that individual gingerols are potent inhibitors of CYP isozymes, whereas GE exhibits a much higher half-maximal inhibition value, indicating no possible herb-drug interactions. However, GE’s inhibition of CYP1A2 and CYP2C8 reflects additive interactions among the constituents. In addition, studies performed to evaluate transporter-mediated intestinal efflux using Caco-2 cells revealed that GE and its phenolics are not substrates of P-glycoprotein (Pgp). Intriguingly, however, 10G and 6S were not detected in the receiver compartment, indicating possible biotransformation across the Caco-2 monolayer. These data strengthen the notion that an interplay of complex interactions among ginger phytochemicals when fed as whole extract dictates its bioactivity highlighting the importance of consuming whole foods over single agents. Our study substantiates the need for an indepth analysis of hepatic biotransformation events and distribution profiles of GE and its active phenolics for the design of safe regimens

    Current and Future Prospects of Nitro-compounds as Drugs for Trypanosomiasis and Leishmaniasis

    Get PDF

    Enabling large-scale wireless broadband

    No full text

    Novel third-generation water-soluble noscapine analogs as superior microtubule-interfering agents with enhanced antiproliferative activity

    No full text
    Noscapine, an opium-derived 'kinder-gentler' microtubule-modulating drug is in Phase I/II clinical trials for cancer chemotherapy. However, its limited water solubility encumbers its development into an oral anticancer drug with clinical promise. Here we report the synthesis of 9 third-generation, water-soluble noscapine analogs with negatively charged sulfonato and positively charged quaternary ammonium groups using noscapine, 9-bromonoscapine and 9-aminonoscapine as scaffolds. The predictive free energy of solvation was found to be lower for sulfonates (6a-c; 8a-c) compared to the quaternary ammonium-substituted counterparts, explaining their higher water solubility. In addition, sulfonates showed higher charge dispersability, which may effectively shield the hydrophobicity of isoquinoline nucleus as indicated by hydrophobicity mapping methods. These in silico data underscore efficient net charge balancing, which may explain higher water solubility and thus enhanced antiproliferative efficacy and improved bioavailability. We observed that 6b, 8b and Sc strongly inhibited tubulin polymerization and demonstrated significant antiproliferative activity against four cancer cell lines compared to noscapine. Molecular simulation and docking studies of tubulin-drug complexes revealed that the brominated compound with a four-carbon chain (4b, 6b, and 8b) showed optimal binding with tubulin heterodimers. Interestingly, 6b, 8b and Sc treated PC-3 cells resulted in preponderance of mitotic cells with multipolar spindle morphology, suggesting that they stall the cell cycle. Furthermore, in vivo pharmacokinetic evaluation of 6b, 8b and Sc revealed at least 1-2-fold improvement in their bioavailability compared to noscapine. To our knowledge, this is the first report to demonstrate novel water-soluble noscapine analogs that may pave the way for future pre-clinical drug development. (C) 2014 Elsevier Inc. All rights reserved

    Effects of GE and its active constituents on the activity of CYP3A4 with substrates, (A) midazolam and (B) testosterone upon incubation with human liver microsomes.

    No full text
    <p>The corresponding positive control, (Ai and Bi) ketoconazole's inhibitory activity was tested followed by (Aii, Bii) 6G, 8G, 10G, 6S and (Aiii, Biii) GE. Data shown are averages of duplicate experiments for GE and positive controls.</p

    Effects of GE and its active constituents on the activity of (A) CYP2D6 with substrate, dextromethorphan and (B) CYP2E1 with substrate, chlorzoxazone upon incubation with human liver microsomes.

    No full text
    <p>The corresponding positive controls (Ai) sulfapenazole and (Bi) tranylcypromine activities were tested followed by (Aii, Bii) 6G, 8G, 10G, 6S and (Aiii, Biii) GE. Data shown are averages of duplicate experiments for GE and positive controls.</p

    Effects of GE and its active constituents on the activity of (A) CYP2C9 with substrate, diclofenac and (B) CYP2C19 with substrate, (s)-mephenytoin upon incubation with human liver microsomes.

    No full text
    <p>The corresponding positive controls (Ai) sulfapenazole and (Bi) benzylnirvanol activities were tested followed by (Aii, Bii) 6G, 8G, 10G, 6S and (Aiii, Biii) GE. Data shown are averages of duplicate experiments for GE and positive controls.</p
    corecore