3 research outputs found

    Recent advances in catalytic and non-catalytic epoxidation of terpenes: a pathway to bio-based polymers from waste biomass

    Get PDF
    \ua9 2023 The Royal Society of Chemistry.Epoxides derived from waste biomass are a promising avenue for the production of bio-based polymers, including polyamides, polyesters, polyurethanes, and polycarbonates. This review article explores recent efforts to develop both catalytic and non-catalytic processes for the epoxidation of terpene, employing a variety of oxidizing agents and techniques for process intensification. Experimental investigations into the epoxidation of limonene have shown that these methods can be extended to other terpenes. To optimize the epoxidation of bio-based terpene, there is a need to develop continuous processes that address limitations in mass and heat transfer. This review discusses flow chemistry and innovative reactor designs as part of a multi-scale approach aimed at industrial transformation. These methods facilitate continuous processing, improve mixing, and either eliminate or reduce the need for solvents by enhancing heat transfer capabilities. Overall, the objective of this review is to contribute to the development of commercially viable processes for producing bio-based epoxides from waste biomass

    Scale-up and sustainability evaluation of biopolymer production from citrus waste offering carbon capture and utilisation pathway

    Get PDF
    Poly(limonene carbonate) (PLC) has been highlighted as an attractive substitute to petroleum derived plastics, due to its utilisation of CO2 and bio-based limonene as feedstocks, offering an effective carbon capture and utilisation pathway. Our study investigates the techno-economic viability and environmental sustainability of a novel process to produce PLC from citrus waste derived limonene, coupled with an anaerobic digestion process to enable energy cogeneration and waste recovery maximisation. Computational process design was integrated with a life cycle assessment to identify the sustainability improvement opportunities. PLC production was found to be economically viable, assuming sufficient citrus waste is supplied to the process, and environmentally preferable to polystyrene (PS) in various impact categories including climate change. However, it exhibited greater environmental burdens than PS across other impact categories, although the environmental performance could be improved with a waste recovery system, at the cost of a process design shift towards energy generation. Finally, our study quantified the potential contribution of PLC to mitigating the escape of atmospheric CO2 concentration from the planetary boundary. We emphasise the importance of a holistic approach to process design and highlight the potential impacts of biopolymers, which is instrumental in solving environmental problems facing the plastic industry and building a sustainable circular economy
    corecore