25 research outputs found

    Skin Lesion Segmentation for Melanoma Using Dilated DenseUNet

    Get PDF
    Melanoma, a highly malignant form of skin cancer, affects individuals of all genders and is associated with high mortality rates, especially in advanced stages. The use of tele-dermatology has emerged as a proficient diagnostic approach for skin lesions and is particularly beneficial in rural areas with limited access to dermatologists. However, accurately, and efficiently segmenting melanoma remains a challenging task due to the significant diversity observed in the morphology, pigmentation, and dimensions of cutaneous nevi. To address this challenge, we propose a novel approach called DenseUNet-169 with a dilated convolution encoder-decoder for automatic segmentation of RGB dermascopic images. By incorporating dilated convolution, our model improves the receptive field of the kernels without increasing the number of parameters. Additionally, we used a method called Copy and Concatenation Attention Block (CCAB) for robust feature computation. To evaluate the performance of our proposed framework, we utilized the International Skin Imaging Collaboration (ISIC) 2017 dataset. The experimental results demonstrate the reliability and effectiveness of our suggested approach compared to existing methodologies. Our framework achieved a high level of accuracy (98.38%), precision (96.07%), recall (94.32%), dice score (95.07%), and Jaccard score (90.45%), outperforming current techniques

    Skin Lesion Segmentation for Melanoma Using Dilated DenseUNet

    Get PDF
    Melanoma, a highly malignant form of skin cancer, affects individuals of all genders and is associated with high mortality rates, especially in advanced stages. The use of tele-dermatology has emerged as a proficient diagnostic approach for skin lesions and is particularly beneficial in rural areas with limited access to dermatologists. However, accurately, and efficiently segmenting melanoma remains a challenging task due to the significant diversity observed in the morphology, pigmentation, and dimensions of cutaneous nevi. To address this challenge, we propose a novel approach called DenseUNet-169 with a dilated convolution encoder-decoder for automatic segmentation of RGB dermascopic images. By incorporating dilated convolution, our model improves the receptive field of the kernels without increasing the number of parameters. Additionally, we used a method called Copy and Concatenation Attention Block (CCAB) for robust feature computation. To evaluate the performance of our proposed framework, we utilized the International Skin Imaging Collaboration (ISIC) 2017 dataset. The experimental results demonstrate the reliability and effectiveness of our suggested approach compared to existing methodologies. Our framework achieved a high level of accuracy (98.38%), precision (96.07%), recall (94.32%), dice score (95.07%), and Jaccard score (90.45%), outperforming current techniques

    Brain Tumor Segmentation Using Enhancement Convolved and Deconvolved CNN Model

    Get PDF
    The brain assumes the role of the primary organ in the human body, serving as the ultimate controller and regulator. Nevertheless, certain instances may give rise to the development of malignant tumors within the brain. At present, a definitive explanation of the etiology of brain cancer has yet to be established. This study develops a model that can accurately identify the presence of a tumor in a given magnetic resonance imaging (MRI) scan and subsequently determine its size within the brain. The proposed methodology comprises a two-step process, namely, tumor extraction and measurement (segmentation), followed by the application of deep learning techniques for the identification and classification of brain tumors. The detection and measurement of a brain tumor involve a series of steps, namely, preprocessing, skull stripping, and tumor segmentation. The overfitting of BTNet-convolutional neural network (CNN) models occurs after a lot of training time because training the model with a large number of images. Moreover, the tuned CNN model shows a better performance for classification step by achieving an accuracy rate of 98%. The performance metrics imply that the BTNet model can reach the optimal classification accuracy for the brain tumor (BraTS 2020) dataset identification. The model analysis segment has a WT specificity of 0.97, a TC specificity of 0.925914, an ET specificity of 0.967717, and Dice scores of 79.73% for ET, 91.64% for WT, and 87.73% for TC

    Faculty Perceptions of E-Learning: Case Study

    Full text link

    A Systematic Review on Medical Leadership in Hospital Setting

    No full text

    GRATITUDE INTERVENTION AT WORK: IT'S IMPACT ON WELL-BEING, JOB SATISFACTION, & ORGNIZATIONAL COMMITMENT

    Full text link

    Artificial Intelligence and Coronavirus COVID-19: Applications, Impact and Future Implications

    No full text
    corecore