22,114 research outputs found

    Do wavelets really detect non-Gaussianity in the 4-year COBE data?

    Get PDF
    We investigate the detection of non-Gaussianity in the 4-year COBE data reported by Pando, Valls-Gabaud & Fang (1998), using a technique based on the discrete wavelet transform. Their analysis was performed on the two DMR faces centred on the North and South Galactic poles respectively, using the Daubechies 4 wavelet basis. We show that these results depend critically on the orientation of the data, and so should be treated with caution. For two distinct orientations of the data, we calculate unbiased estimates of the skewness, kurtosis and scale-scale correlation of the corresponding wavelet coefficients in all of the available scale domains of the transform. We obtain several detections of non-Gaussianity in the DMR-DSMB map at greater than the 99 per cent confidence level, but most of these occur on pixel-pixel scales and are therefore not cosmological in origin. Indeed, after removing all multipoles beyond =40\ell = 40 from the COBE maps, only one robust detection remains. Moreover, using Monte-Carlo simulations, we find that the probability of obtaining such a detection by chance is 0.59. We repeat the analysis for the 53+90 GHz coadded COBE map. In this case, after removing >40\ell > 40 multipoles, two non-Gaussian detections at the 99 per cent level remain. Nevertheless, again using Monte-Carlo simulations, we find that the probability of obtaining two such detections by chance is 0.28. Thus, we conclude the wavelet technique does {\em not} yield strong evidence for non-Gaussianity of cosmological origin in the 4-year COBE data.Comment: 7 pages, 5 figures. Revised version including discussion of orientation sensitivity of the wavelet decomposition. MNRAS submitte

    Spectral analysis of gluonic pole matrix elements for fragmentation

    Full text link
    The non-vanishing of gluonic pole matrix elements can explain the appearance of single spin asymmetries in high-energy scattering processes. We use a spectator framework approach to investigate the spectral properties of quark-quark-gluon correlators and use this to study gluonic pole matrix elements. Such matrix elements appear in principle both for distribution functions such as the Sivers function and fragmentation functions such as the Collins function. We find that for a large class of spectator models, the contribution of the gluonic pole matrix element in fragmentation functions vanishes. This outcome is important in the study of universality for fragmentation functions and confirms findings using a different approach.Comment: 9 pages, 4 figures, added reference

    Universality of TMD distribution functions of definite rank

    Get PDF
    Transverse momentum dependent (TMD) distribution and fragmentation functions are described as Fourier transforms of matrix elementscontaining nonlocal combinations of quark and gluon fields. These matrix elements also contain a gauge link operator with a process dependent path, of which the process dependence that can be traced back to the color flow in the process. Expanding into irreducible tensors built from the transverse momenta p_\st, we can define a universal set of TMD correlators of definite rank with a well-defined operator structure.Comment: 6 pages, to be published in proceedings of the Third Worshop on the QCD Structure of the Nucleon (QCD N'12), Bilbao, Spain, 22-26 October 201

    Ultrapure glass optical waveguide development in microgravity by the sol-gel process

    Get PDF
    Multicomponent, homogeneous, noncrystalline oxide gels can be prepared by the sol-gel process and these gels are promising starting materials for melting glasses in the space environment. The sol-gel process referred to here is based on the polymerization reaction of alkoxysilane with other metal alkoxy compounds or suitable metal salts. Many of the alkoxysilanes or other metal alkoxides are liquids and thus can be purified by distillation. The use of gels offers several advantages such as high purity and lower melting times and temperatures. The sol-gel process is studied for utilization in the preparation of multicomponent ultrapure glass batches for subsequent containerless melting of the batches in space to prepare glass blanks for optical waveguides

    Universality of TMD correlators

    Full text link
    In a high-energy scattering process with hadrons in the initial state, color is involved. Transverse momentum dependent distribution functions (TMDs) describe the quark and gluon distributions in these hadrons in momentum space with the inclusion of transverse directions. Apart from the (anti)-quarks and gluons that are involved in the hard scattering process, additional gluon emissions by the hadrons have to be taken into account as well, giving rise to Wilson lines or gauge links. The TMDs involved are sensitive to the process under consideration and hence potentially nonuniversal due to these Wilson line interactions with the hard process; different hard processes give rise to different Wilson line structures. We will show that in practice only a finite number of universal TMDs have to be considered, which come in different linear combinations depending on the hard process under consideration, ensuring a generalized universality. For quarks this gives rise to three Pretzelocity functions, whereas for gluons a richer structure of functions arises.Comment: 6 pages, presented by the first author at the 4th International Workshop on Transverse Polarization Phenomena in Hard Processes (Transversity 2014), June 9-13, 2014, Chia, Italy. To appear in EPJ Web of Conference
    corecore