17 research outputs found

    Enhancing the tensor-to-scalar ratio in simple inflation

    Full text link
    We show that in theories with a nontrivial kinetic term the contribution of the gravitational waves to the CMB fluctuations can be substantially larger than that is naively expected in simple inflationary models. This increase of the tensor-to-scalar perturbation ratio leads to a larger B-component of the CMB polarization, thus making the prospects for future detection much more promising. The other important consequence of the considered model is a higher energy scale of inflation and hence higher reheating temperature compared to a simple inflation.Comment: 9 pages, 1 figure and references are added, discussion is slightly extended, published versio

    Suppressing Quantum Fluctuations in Classicalization

    Full text link
    We study vacuum quantum fluctuations of simple Nambu-Goldstone bosons - derivatively coupled single scalar-field theories possessing shift-symmetry in field space. We argue that quantum fluctuations of the interacting field can be drastically suppressed with respect to the free-field case. Moreover, the power-spectrum of these fluctuations can soften to become red for sufficiently small scales. In quasiclassical approximation, we demonstrate that this suppression can only occur for those theories that admit such classical static backgrounds around which small perturbations propagate faster than light. Thus, a quasiclassical softening of quantum fluctuations is only possible for theories which classicalize instead of having a usual Lorentz invariant and local Wilsonian UV- completion. We illustrate our analysis by estimating the quantum fluctuations for the DBI-like theories.Comment: 6 pages, no figures, published version, more general discussion of uncertainty relation in QFT, improved and more general derivation of the main resul

    Near Scale Invariance with Modified Dispersion Relations

    Get PDF
    We describe a novel mechanism to seed a nearly scale invariant spectrum of adiabatic perturbations during a non-inflationary stage. It relies on a modified dispersion relation that contains higher powers of the spatial momentum of matter perturbations. We implement this idea in the context of a massless scalar field in an otherwise perfectly homogeneous universe. The couplings of the field to background scalars and tensors give rise to the required modification of its dispersion relation, and the couplings of the scalar to matter result in an adiabatic primordial spectrum. This work is meant to explicitly illustrate that it is possible to seed nearly scale invariant primordial spectra without inflation, within a conventional expansion history.Comment: 7 pages and no figures. Uses RevTeX

    K fields, compactons, and thick branes

    Full text link
    K fields, that is, fields with a non-standard kinetic term, allow for soliton solutions with compact support, i.e., compactons. Compactons in 1+1 dimensions may give rise to topological defects of the domain wall type and with finite thickness in higher dimensions. Here we demonstrate that, for an appropriately chosen kinetic term, propagation of linear perturbations is completely suppressed outside the topological defect, confining the propagation of particles inside the domain wall. On the other hand, inside the topological defect the propagation of linear perturbations is of the standard type, in spite of the non-standard kinetic term. Consequently, this compacton domain wall may act like a brane of finite thickness which is embedded in a higher dimensional space, but to which matter fields are constrained. In addition, we find strong indications that, when gravity is taken into account, location of gravity in the sense of Randall--Sundrum works for these compacton domain walls. When seen from the bulk, these finite thickness branes, in fact, cannot be distinguished from infinitely thin branes.Comment: some references and further remarks adde

    On Power Law Inflation in DBI Models

    Get PDF
    Inflationary models in string theory which identify the inflaton with an open string modulus lead to effective field theories with non-canonical kinetic terms: Dirac-Born-Infeld scalar field theories. In the case of a DD-brane moving in an AdS throat with a quadratic scalar field potential DBI kinetic terms allow a novel realization of power law inflation. This note adresses the question of whether this behaviour is special to this particular choice of throat geometry and potential. The answer is that for any throat geometry one can explicitly find a potential which leads to power law inflation. This generalizes the well known fact that an exponential potential gives power law inflation in the case of canonical kinetic terms.Comment: References and comments adde

    Halos of Unified Dark Matter Scalar Field

    Get PDF
    We investigate the static and spherically symmetric solutions of Einstein's equations for a scalar field with non-canonical kinetic term, assumed to provide both the dark matter and dark energy components of the Universe. In particular, we give a prescription to obtain solutions (dark halos) whose rotation curve v_c(r) is in good agreement with observational data. We show that there exist suitable scalar field Lagrangians that allow to describe the cosmological background evolution and the static solutions with a single dark fluid.Comment: 19 pages LaTeX file; minor corrections made affecting Eqs.(52)-(56

    Compact self-gravitating solutions of quartic (K) fields in brane cosmology

    Full text link
    Recently we proposed that K fields, that is, fields with a non-standard kinetic term, may provide a mechanism for the generation of thick branes, based on the following observations. Firstly, K field theories allow for soliton solutions with compact support, i.e., compactons. Compactons in 1+1 dimensions may give rise to topological defects of the domain wall type and with finite thickness in higher dimensions. Secondly, propagation of linear perturbations is confined inside the compacton domain wall. Further, these linear perturbations inside the topological defect are of the standard type, in spite of the non-standard kinetic term. Thirdly, when gravity is taken into account, location of gravity in the sense of Randall--Sundrum works for these compacton domain walls provided that the backreaction of gravity does not destabilize the compacton domain wall. It is the purpose of the present paper to investigate in detail the existence and stability of compacton domain walls in the full K field and gravity system, using both analytical and numerical methods. We find that the existence of the domain wall in the full system requires a correlation between the gravitational constant and the bulk cosmological constant, which is thoroughly analyzed.Comment: 40 pages, 18 figures, one section on brane stability added, where the stability under fluctuations of the scalar field is demonstrate
    corecore