773 research outputs found

    On the Raman Spectrum of Thianthrene in the Solid State

    Get PDF

    On the Raman Spectrum of Diphenylmethane

    Get PDF

    Heat shock factor binding in Alu repeats expands its involvement in stress through an antisense mechanism

    Get PDF
    Background: Alu RNAs are present at elevated levels in stress conditions and, consequently, Alu repeats are increasingly being associated with the physiological stress response. Alu repeats are known to harbor transcription factor binding sites that modulate RNA pol II transcription and Alu RNAs act as transcriptional co-repressors through pol II binding in the promoter regions of heat shock responsive genes. An observation of a putative heat shock factor (HSF) binding site in Alu led us to explore whether, through HSF binding, these elements could further contribute to the heat shock response repertoire. Results: Alu density was significantly enriched in transcripts that are down-regulated following heat shock recovery in HeLa cells. ChIP analysis confirmed HSF binding to a consensus motif exhibiting positional conservation across various Alu subfamilies, and reporter constructs demonstrated a sequence-specific two-fold induction of these sites in response to heat shock. These motifs were over-represented in the genic regions of down-regulated transcripts in antisense oriented Alus. Affymetrix Exon arrays detected antisense signals in a significant fraction of the down-regulated transcripts, 50% of which harbored HSF sites within 5 kb. siRNA knockdown of the selected antisense transcripts led to the over-expression, following heat shock, of their corresponding down-regulated transcripts. The antisense transcripts were significantly enriched in processes related to RNA pol III transcription and the TFIIIC complex. Conclusions: We demonstrate a non-random presence of Alu repeats harboring HSF sites in heat shock responsive transcripts. This presence underlies an antisense-mediated mechanism that represents a novel component of Alu and HSF involvement in the heat shock response

    Evolution and distribution of RNA polymerase II regulatory sites from RNA polymerase III dependant mobile Alu elements

    Get PDF
    BACKGROUND: The primate-specific Alu elements, which originated 65 million years ago, exist in over a million copies in the human genome. These elements have been involved in genome shuffling and various diseases not only through retrotransposition but also through large scale Alu-Alu mediated recombination. Only a few subfamilies of Alus are currently retropositionally active and show insertion/deletion polymorphisms with associated phenotypes. Retroposition occurs by means of RNA intermediates synthesised by a RNA polymerase III promoter residing in the A-Box and B-Box in these elements. Alus have also been shown to harbour a number of transcription factor binding sites, as well as hormone responsive elements. The distribution of Alus has been shown to be non-random in the human genome and these elements are increasingly being implicated in diverse functions such as transcription, translation, response to stress, nucleosome positioning and imprinting. RESULTS: We conducted a retrospective analysis of putative functional sites, such as the RNA pol III promoter elements, pol II regulatory elements like hormone responsive elements and ligand-activated receptor binding sites, in Alus of various evolutionary ages. We observe a progressive loss of the RNA pol III transcriptional potential with concomitant accumulation of RNA pol II regulatory sites. We also observe a significant over-representation of Alus harboring these sites in promoter regions of signaling and metabolism genes of chromosome 22, when compared to genes of information pathway components, structural and transport proteins. This difference is not so significant between functional categories in the intronic regions of the same genes. CONCLUSIONS: Our study clearly suggests that Alu elements, through retrotransposition, could distribute functional and regulatable promoter elements, which in the course of subsequent selection might be stabilized in the genome. Exaptation of regulatory elements in the preexisting genes through Alus could thus have contributed to evolution of novel regulatory networks in the primate genomes. With such a wide spectrum of regulatory sites present in Alus, it also becomes imperative to screen for variations in these sites in candidate genes, which are otherwise repeat-masked in studies pertaining to identification of predisposition markers

    Alu repeat analysis in the complete human genome: trends and variations with respect to genomic composition

    Get PDF
    Motivation: Transposon-derived Alu repeats are exclusively associated with primate genomes. They have gained considerable importance in the recent times with evidence of their involvement in various aspects of gene regulation, e.g. alternative splicing, nucleosome positioning, CpG methylation, binding sites for transcription factors and hormone receptors, etc. The objective of this study is to investigate the factors that influence the distribution of Alu repeat elements in the human genome. Such analysis is expected to yield insights into various aspects of gene regulation in primates. Results: Analysis of Alu repeat distribution for the human genome build 32 (released in January 2003) reveals that they occupy nearly one-tenth portion of the sequenced regions. Huge variations in Alu frequencies were seen across the genome with chromosome 19 being the most and chromosome Y being the least Alu dense chromosomes. The highlights of the analysis are as follows: (1) three-fourth of the total genes in the genome are associated with Alus. (2) Alu density is higher in genes as compared with intergenic regions in all the chromosomes except 19 and 22. (3) Alu density in human genome is highly correlated with GC content, gene density and intron density with GC content being major deterministic factor compared with other two. (4) Alu densities were correlated more with gene density than intron density indicating the insertion of Alus in untranslated regions of exons

    Preparation and characterization of silicon nitride-silicon carbide composites

    Get PDF
    Silicon nitride-silicon carbide (Si3N4-SiC) composites were prepared by varying the percentage of silicon nitride at temperatures of 1350 to 1450°C. The mechanical and thermal properties of these composites were determined. The modulus of rupture of the composites increases with increase of temperature whereas the thermal expansion decreases. Composites with 10% and 50% Si3N4 have modulus of rupture of 49 and 86 MPa at 1400°C and thermal expansion coefficients (25°–1000°C) of 4·4 × 10−6 and 3·2 × 10−6°C−1 respectively

    A novel RET inhibitor with potent efficacy against medullary thyroid cancer in vivo

    Get PDF
    Background Most medullary thyroid carcinomas (MTC) recur or progress despite optimal surgical resection. Current targeted-therapies show promise but lack durable efficacy and tolerability. The purpose of this study was to build upon previous in vitro work and evaluate Withaferin A (WA), a novel RET inhibitor, in a metastatic murine model of MTC. Methods 5 million DRO-81-1 human MTC-cells injected in the left posterior neck of Nu/Nu mice uniformly generated metastases to the liver, spleen, and/or lungs. Treatment with WA (8mg/kg/day i.p.×21 days) was started for tumors >100 mm3. Endpoints were survival, tumor>1500 mm3, decreased bodyweight, or body score (all measured thrice weekly). Results All controls (saline; n=5) died or deteriorated from metastatic disease by 7 weeks post injection. All treated animals were alive,(WA; n=5), having tumor regression and growth-delay without toxicity or weight-loss at 6 wks post treatment; p<0.01. Tumor cells treated with WA demonstrated inhibition of total and phospho-RET levels by Western-Blot analysis in a dose-dependent manner (almost complete inhibition with 5uM WA treatment) as well as potent inhibition of phospho-ERK and phospho-AKT levels. Conclusions Withaferin A is a novel natural-product RET-inhibitor with efficacy in a metastatic murine model of MTC. Further long-term efficacy/toxicity studies are warranted to evaluate this compound for clinical translation

    Nonrandom distribution of Alu elements in genes of various functional categories: insight from analysis of human chromosomes 21 and 22

    Get PDF
    The first draft of the human genome has revealed enormous variability in the global distribution of Alu repeat elements. There are regions such as the four homeobox gene clusters, which are nearly devoid of these repeats that contrast with repeat dense regions in other transcriptionally active regions of the genome. Our analysis of the completely sequenced chromosomes 21 and 22 revealed a striking bias in Alu distribution. These elements are more clustered in genes which are involved in metabolism, transport, and signaling processes. In contrast, they are significantly fewer in genes coding for information pathway components as well as structural proteins. This bias in Alu distribution is independent of the effect of Alu density of the flanking genomic region and is also not affected by the GC content of the gene and its upstream and downstream regions. The relative proportions of Alu subfamilies (Alu J, Alu S, and Alu Y) are not significantly different in genes with high Alu density belonging to the functional categories of transport, metabolism, and signaling. However, in the structural proteins and information genes, these proportions are lower than the other three categories. We suggest that Alu elements might be involved in regulatory mechanisms and are therefore differentially selected in primate genomes
    corecore