12 research outputs found

    Optimization Techniques for Miniaturized Integrated Electrochemical Sensors

    Get PDF
    Electrochemical sensors are integral components of various integrated sensing applications. In this work, we provide details of optimizing electrochemical sensors for CMOS compatible integrated designs at sub-mm size scales. The focus is on optimization of electrode materials and geometry. We provide design details for both working electrode and reference electrode materials for hydrogen peroxide sensing applications which form the basis for many metabolic sensors. We also present results on geometrical variations in designing such sensors and demonstrate that such considerations are very relevant for optimizing the overall sensor performance. We also present results for such optimized sensors on actual CMOS platforms. The methods presented in this work can be adopted for countless applications of electrochemical sensing platforms

    Silicon-on-insulator-based complementary metal oxide semiconductor integrated optoelectronic platform for biomedical applications

    Get PDF
    Microscale optical devices enabled by wireless power harvesting and telemetry facilitate manipulation and testing of localized biological environments (e.g., neural recording and stimulation, targeted delivery to cancer cells). Design of integrated microsystems utilizing optical power harvesting and telemetry will enable complex in vivo applications like actuating a single nerve, without the difficult requirement of extreme optical focusing or use of nanoparticles. Silicon-on-insulator (SOI)-based platforms provide a very powerful architecture for such miniaturized platforms as these can be used to fabricate both optoelectronic and microelectronic devices on the same substrate. Near-infrared biomedical optics can be effectively utilized for optical power harvesting to generate optimal results compared with other methods (e.g., RF and acoustic) at submillimeter size scales intended for such designs. We present design and integration techniques of optical power harvesting structures with complementary metal oxide semiconductor platforms using SOI technologies along with monolithically integrated electronics. Such platforms can become the basis of optoelectronic biomedical systems including implants and lab-on-chip systems

    Integrated Microsystems for Wireless Sensing Applications

    Get PDF
    Personal health monitoring is being considered the future of a sustainable health care system. Biosensing platforms are a very important component of this system. Real-time and accurate sensing is essential for the success of personal health care model. Currently, there are many efforts going on to make these sensors practical and more useful for such measurements. Implantable sensors are considered the most widely applicable and most reliable sensors for such accurate health monitoring applications. However, macroscopic (cm scale) size has proved to be a limiting factor for successful use of these systems for long time and in large numbers. This work is focused to resolve the issues related with miniaturizing these devices to a microscopic (mm scale) size scale which can minimize many practical difficulties associated with their larger counterparts currently. To accomplish this goal of miniaturization while retaining or even improving on the necessary capabilities for such sensing platforms, an integrated approach is presented which focuses on system-level miniaturization using standard fabrication procedures. First, it is shown that a completely integrated and wireless system is the best solution to achieve desired miniaturization without sacrificing the functionality of the system. Hence, design and implementation of the different components comprising the complete system needs to be done according to the requirements of the overall integrated system. This leads to the need of on-chip functional sensors, integrated wireless power supply, integrated wireless communication and integrated control system for realization of such system. In this work, different options for implementation of each of these subsystems are compared and an optimal solution is presented for each subsystem. For such complex systems, it is imperative to use a standard fabrication process which can provide the required functionality for all subsystems at smallest possible size scale. Complementary Metal Oxide Semiconductor (CMOS) process is the most appropriate of the technologies in this regard and has enabled incredible miniaturization of the computing industry. It also provides options for designing different subsystems on the same platform in a monolithic process with very high yield. This choice then leads to actual designs of subsystems in the CMOS technology using different possible methods. Careful comparison of these subsystems provides insights into different design adjustments that are made until the desired functions are achieved at the desired size scale. Integration of all these compatible subsystems in the same platform is shown to provide the smallest possible sensing platform to date. The completely wireless system can measure a host of different important analyte and can transmit the data to an external device which can use it for appropriate purpose. Results on measurements in phosphate buffer solution, blood serum and whole blood along with wireless communication in real biological tissues are provided. Specific examples of glucose and DNA sensors are presented and the use for many other relevant applications is also proposed. Finally, insights into animal model studies and future directions of the research are discussed. </p

    Optical power transfer and communication methods for wireless implantable sensing platforms

    Get PDF
    Ultrasmall scale implants have recently attracted focus as valuable tools for monitoring both acute and chronic diseases. Semiconductor optical technologies are the key to miniaturizing these devices to the long-sought sub-mm scale, which will enable long-term use of these devices for medical applications. This can also enable the use of multiple implantable devices concurrently to form a true body area network of sensors. We demonstrate optical power transfer techniques and methods to effectively harness this power for implantable devices. Furthermore, we also present methods for optical data transfer from such implants. Simultaneous use of these technologies can result in miniaturized sensing platforms that can allow for large-scale use of such systems in real world applications

    Fabrication of Patterned Integrated Electrochemical Sensors

    Get PDF
    Fabrication of integrated electrochemical sensors is an important step towards realizing fully integrated and truly wireless platforms for many local, real-time sensing applications. Micro/nanoscale patterning of small area electrochemical sensor surfaces enhances the sensor performance to overcome the limitations resulting from their small surface area and thus is the key to the successful miniaturization of integrated platforms. We have demonstrated the microfabrication of electrochemical sensors utilizing top-down lithography and etching techniques on silicon and CMOS substrates. This choice of fabrication avoids the need of bottom-up techniques that are not compatible with established methods for fabricating electronics (e.g., CMOS) which form the industrial basis of most integrated microsystems. We present the results of applying microfabricated sensors to various measurement problems, with special attention to their use for continuous DNA and glucose sensing. Our results demonstrate the advantages of using micro- and nanofabrication techniques for the miniaturization and optimization of modern sensing platforms that employ well-established electronic measurement techniques

    Optical Methods for Wireless Implantable Sensing Platforms

    Get PDF
    Ultra small scale implants have gained lots of importance for both acute and chronic applications. Optical techniques hold the key to miniaturizing these devices to long sought sub-mm scale. This will lead towards long term use of these devices for medically relevant applications. It can also allow using multiple of these devices at the same time and forming a true body area network of sensors. In this paper, we present optical power transfer to such devices and the techniques to harness this power for different applications, for example high voltage or high current applications. We also present methods for wireless data transfer from such implants

    Experimental demonstration of a reconfigurable silicon thermo-optical device based on spectral tuning of ring resonators for optical signal processing

    Get PDF
    We have experimentally demonstrated a reconfigurable silicon thermo-optical device able to tailor its intrinsic spectral optical response by means of the thermo-optical control of individual and uncoupled resonant modes of micro-ring resonators. Preliminarily results show that the device’s optical response can be tailored to build up distinct and reconfigurable logic levels for optical signal processing, as well as control of overall figures of merit, such as free-spectral-range, extinction ratio and 3dB bandwidth. In addition, the micro-heaters on top of the ring resonators are able to tune the resonant wavelength with efficiency of 0.25 nm/mW within a range of up to 10 nm, as well as able to switch the resonant wavelength within fall and rise time of 15 μs

    VCSEL-Based CMOS Integrated Optical Telemetry Link for Miniaturized Implants

    No full text
    corecore