2 research outputs found

    Potential of GTL-Derived Biosolids for Water Treatment: Fractionization, Leachate, and Environmental Risk Analysis

    No full text
    This study aims to understand the potential of using biosolids produced from the world’s largest gas-to-liquid (GTL) plant for water treatment applications. The metal fractionization of the two samples: raw biosolid (BS) and the pyrolyzed biosolid-BS char (BSC) (temperature: 450 °C, heating rate: 5 °C/min, residence time: 30 min) into exchangeables (F1), reducible (F2), oxidizable (F3), and residual (F4) were carried out following the Community Bureau of Reference (BCR) procedure. Characterization showed an increased carbon content and reduced oxygen content in the biochar sample. Additionally, the presence of calcium, magnesium, and iron were detected in smaller quantities in both samples. Based on the extraction results for metals, the environmental risk analysis was determined based on RAC (Risk Assessment Code) and PERI (Potential Ecological Risk Index) indices. Furthermore, leaching studies following the TCLP (Toxicity Characteristic Leaching Procedure) were conducted. The results prove that pyrolyzing stabilizes the metals present in the raw material as BS sample had high F1 fractions, and the BS char had a greater F4 fraction. While the RAC and PERI indices show that the pyrolyzed BS has a ‘low risk’, much reduced compared to the original BS sample, this is confirmed by the leaching studies that displayed minimal leaching from the pyrolyzed sample. Overall, this study proves that the GTL biosolids can best be applied for water treatment after pyrolysis

    A facile energy-efficient approach to prepare super oil-sorbent thin films

    Get PDF
    Oil spills on water surface and shoreline have caused significant water pollution, and one of the ways to deal with them is to use oil sorbents. An effective sorbent provides high oil uptake and retention values, high selectivity, super-fast uptake kinetics, and sufficient mechanical strength to ensure practical application under different conditions. In this regard, synthetic sorbents made up of graphene, carbon nanotubes, and polymers in the form of aerogels, thin films, pads, and non-woven fibers have been widely explored. However, none of them addresses all the attributes of an ideal oil sorbent. Aerogels provide extremely high uptake values, but they are so light that it is difficult for the end user to handle them. On the other hand, thin films and non-woven fibers can quickly absorb oil but suffer from low uptake capacity with low retention values. Similarly, commercial oil sorbent pads have sufficient mechanical strength, but low uptake capacity compared to aerogels. Herein, we present a super oil sorbent with a porous structure using a facile energy-efficient approach. The as-prepared sorbent comprises a porous thin film with micropores and macro-cavities, resulting in super-fast uptake kinetics and a high oil uptake value of 85 g/g. Moreover, tensile test results confirm sorbent’s effectiveness in spill response. Lastly, our unique design does not involve expensive hydrophobic functionalization and thus utilizes lower embodied energy and generates lower carbon footprints
    corecore