10 research outputs found

    Digital reconstruction of the inner ear of Leptictidium auderiense (Leptictida, Mammalia) and North American leptictids reveals new insight into leptictidan locomotor agility

    Get PDF
    Leptictida are basal Paleocene to Oligocene eutherians from Europe and North America comprising species with highly specialized postcranial features including elongated hind limbs. Among them, the European Leptictidium was probably a bipedal runner or jumper. Because the semicircular canals of the inner ear are involved in detecting angular acceleration of the head, their morphometry can be used as a proxy to elucidate the agility in fossil mammals. Here we provide the first insight into inner ear anatomy and morphometry of Leptictida based on high-resolution computed tomography of a new specimen of Leptictidium auderiense from the middle Eocene Messel Pit (Germany) and specimens of the North American Leptictis and Palaeictops. The general morphology of the bony labyrinth reveals several plesiomorphic mammalian features, such as a secondary crus commune. Leptictidium is derived from the leptictidan groundplan in lacking the secondary bony lamina and having proportionally larger semicircular canals than the leptictids under study. Our estimations reveal that Leptictidium was a very agile animal with agility score values (4.6 and 5.5, respectively) comparable to Macroscelidea and extant bipedal saltatory placentals. Leptictis and Palaeictops have lower agility scores (3.4 to 4.1), which correspond to the more generalized types of locomotion (e.g., terrestrial, cursorial) of most extant mammals. In contrast, the angular velocity magnitude predicted from semicircular canal angles supports a conflicting pattern of agility among leptictidans, but the significance of these differences might be challenged when more is known about intraspecific variation and the pattern of semicircular canal angles in non-primate mammals

    Ancient collagen reveals evolutionary history of the endemic South American ‘ungulates’

    No full text
    Since the late eighteenth century, fossils of bizarre extinct creatures have been described from the Americas, revealing a previously unimagined chapter in the history of mammals. The most bizarre of these are the ‘native’ South American ungulates thought to represent a group of mammals that evolved in relative isolation on South America, but with an uncertain affinity to any particular placental lineage. Many authors have considered them descended from Laurasian ‘condylarths’, which also includes the probable ancestors of perissodactyls and artiodactyls, whereas others have placed them either closer to the uniquely South American xenarthrans (anteaters, armadillos and sloths) or the basal afrotherians (e.g. elephants and hyraxes). These hypotheses have been debated owing to conflicting morphological characteristics and the hitherto inability to retrieve molecular information. Of the ‘native’ South American mammals, only the toxodonts and litopterns persisted until the Late Pleistocene–Early Holocene. Owing to known difficulties in retrieving ancient DNA (aDNA) from specimens from warm climates, this research presents a molecular phylogeny for both Macrauchenia patachonica (Litopterna) and Toxodon platensis (Notoungulata) recovered using proteomics-based (liquid chromatography–tandem mass spectrometry) sequencing analyses of bone collagen. The results place both taxa in a clade that is monophyletic with the perissodactyls, which today are represented by horses, rhinoceroses and tapirs
    corecore