99 research outputs found

    Cooperative Innovation Behavior Based on Big Data

    Get PDF
    With the rapid change of technology, cooperative innovation based on data sharing has become an imminent tactic for enterprises to gain competitive advantages. This paper adopted a mixed method approach (case study-modelling-case study) to study firms’ co-opetition behaviour based on their data analytics capabilities for innovation. We show that firms favour cooperative among peers with same capabilities, i.e. when each firm’s data level is comparable to their partners. We further establish that data transferability and incentive have high impact on cooperation decisions. Finally, we explain the evolution path of firms’ cooperation decisions and discuss the best options for them to sustain long-term growth and competitiveness. The results provide a basis for firms to decide how best to utilise big data for collaborative innovation, so as to improve customers’ product adoption and reduce costs

    3D Bayesian Variational Full Waveform Inversion

    Get PDF
    Seismic full-waveform inversion (FWI) provides high resolution images of the subsurface by exploiting information in the recorded seismic waveforms. This is achieved by solving a highly nonnlinear and nonunique inverse problem. Bayesian inference is therefore used to quantify uncertainties in the solution. Variational inference is a method that provides probabilistic, Bayesian solutions efficiently using optimization. The method has been applied to 2D FWI problems to produce full Bayesian posterior distributions. However, due to higher dimensionality and more expensive computational cost, the performance of the method in 3D FWI problems remains unknown. We apply three variational inference methods to 3D FWI and analyse their performance. Specifically we apply automatic differential variational inference (ADVI), Stein variational gradient descent (SVGD) and stochastic SVGD (sSVGD), to a 3D FWI problem, and compare their results and computational cost. The results show that ADVI is the most computationally efficient method but systematically underestimates the uncertainty. The method can therefore be used to provide relatively rapid but approximate insights into the subsurface together with a lower bound estimate of the uncertainty. SVGD demands the highest computational cost, and still produces biased results. In contrast, by including a randomized term in the SVGD dynamics, sSVGD becomes a Markov chain Monte Carlo method and provides the most accurate results at intermediate computational cost. We thus conclude that 3D variational full-waveform inversion is practically applicable, at least in small problems, and can be used to image the Earth's interior and to provide reasonable uncertainty estimates on those images

    Reputation-based state machine replication

    Get PDF
    State machine replication (SMR) allows nodes to jointly maintain a consistent ledger, even when a part of nodes are Byzantine. To defend against and/or limit the impact of attacks launched by Byzantine nodes, there have been proposals that combine reputation mechanisms to SMR, where each node has a reputation value based on its historical behaviours, and the node’s voting power will be proportional to its reputation. Despite the promising features of reputation-based SMR, existing studies do not provide formal treatment on the reputation mechanism on SMR protocols, including the types of behaviours affecting the reputation, the security properties of the reputation mechanism, or the extra security properties of SMR using reputation mechanisms. In this paper, we provide the first formal study on the reputation-based SMR. We define the security properties of the reputation mechanism w.r.t. these misbehaviours. Based on the formalisation of the reputation mechanism, we formally define the reputation-based SMR, and identify a new property reputationconsistency that is necessary for ensuring reputation-based SMR’s safety. We then design a simple reputation mechanism that achieves all security properties in our formal model. To demonstrate the practicality, we combine our reputation mechanism to the Sync-HotStuff SMR protocol, yielding a simple and efficient reputation-based SMR at the cost of only an extra ∆ in latency, where ∆ is the maximum delay in synchronous networks

    Locational Reserve Disqualification for Distinct Scenarios

    Full text link

    Paleoenvironmental change in the middle Okinawa Trough since the last deglaciation : evidence from the sedimentation rate and planktonic foraminiferal record

    Get PDF
    Author Posting. © The Authors, 2006. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Palaeogeography, Palaeoclimatology, Palaeoecology 243 (2007): 378-393, doi:10.1016/j.palaeo.2006.08.016.Well-dated, high-resolution records of planktonic foraminifera and oxygen isotopes from two sediment cores, A7 and E017, in the middle Okinawa Trough reveal strong and rapid millennial-scale climate changes since ~18 to 17 thousand years before present (kyr B.P.). Sedimentation rate shows a sudden drop at ~11.2 cal. kyr B.P. due to a rapid rise of sea-level after the Younger Dryas (YD) and consequently submergence of the large continental shelf on the East China Sea (ECS) and the retreat of the estuary providing sediment to the basin. During the last deglaciation, the relative abundance of warm and cold species of planktonic foraminifera fluctuates strongly, consistent with the timing of sea surface temperature (SST) variations determined from Mg/Ca measurements of planktonic foraminifera from one of the two cores. These fluctuations are coeval with climate variation recorded in the Greenland ice cores and North Atlantic sediments, namely Heinrich event 1 (H1), Bølling-Allerød (B/A) and YD events. At about 9.4 kyr B.P., a sudden change in the relative abundance of shallow to deep planktonic species probably indicates a sudden strengthening of the Kuroshio Current in the Okinawa Trough, which was synchronous with a rapid sea-level rise at 9.5-9.2 kyr B.P. in the ECS, Yellow Sea (YS) and South China Sea (SCS). The abundance of planktonic foraminiferal species, together with Mg/Ca based SST, exhibits millennial-scale oscillations during the Holocene, with 7 cold events (at about 1.7, 2.3-4.6, 6.2, 7.3, 8.2, 9.6, 10.6 cal. kyr BP) superimposed on a Holocene warming trend. This Holocene trend, together with centennial-scale SST variations superimposed on the last deglacial trend, suggests that both high and low latitude influences affected the climatology of the Okinawa Trough.This study was supported by the National Natural Science Foundation of China (Grant Nos. 40206007, 40106006, 90211022 and 40506027), the Chinese Academy of Sciences innovation program (KZCX3-SW-220), and the NSF (OCE05-29600 to DWO)

    Energy-Conserving Composite Staggered-Grid Finite-Difference Time-Domain Scheme for First-Order Wave Equation System

    No full text
    Finite-difference time-domain (FDTD) scheme has been widely used for seismic wave simulations in hydrocarbon exploration and earthquake modeling. To reduce the grid dispersion numerical artifact, FDTD scheme needs to use finer grids on low-velocity regions than on high-velocity regions. Therefore, if the simulation region presents strong velocity variations, then using a composite-grid FDTD scheme is computationally more efficient than using a uniform-grid FDTD scheme. The challenge, however, is to construct a composite-grid FDTD scheme that is numerically stable. In this work, I propose an energy-conserving composite staggered-grid FDTD scheme (EC-CGS) for the first-order wave equation system. The composite-grid configuration allows EC-CGS to use a fine grid on the low-velocity region and a coarse grid on the high-velocity region. Meanwhile, the energy-conserving property ensures numerical stability for EC-CGS provided that the time step meets a constraint of CFL type. In addition, EC-CGS is also consistent with the transmission condition across the grid refinement interface, because one key step in EC-CGS is to update the data near the grid refinement interface by solving linear equation system(s) derived from the energy-conserving property and the transmission condition. Numerical results of 1-D/3-D wave simulations confirmed the energy-conserving property, stability and convergence of EC-CGS. In particular, EC-CGS solutions agree well with UGS solutions even when strong heterogeneity is present across the grid interface, despite the fact that EC-CGS uses a coarser grid on part of the computational domain and thereby takes less run time and needs less memory
    • …
    corecore