
Reputation-based state machine replication
Muhong Huang∗, Runchao Han†, Zhiqiang Du∗‡, Yanfang Fu∗, and Liangxin Liu∗

∗Xi’an Technological University, China
{muhonghuang, duzhiqiang, fuyanfang, liuliangxin}@xatu.edu.cn

†Monash University and CSIRO’s Data61, Australia
me@runchao.rocks

Abstract—State machine replication (SMR) allows nodes to
jointly maintain a consistent ledger, even when a part of nodes
are Byzantine. To defend against and/or limit the impact of
attacks launched by Byzantine nodes, there have been proposals
that combine reputation mechanisms to SMR, where each node
has a reputation value based on its historical behaviours, and
the node’s voting power will be proportional to its reputation.
Despite the promising features of reputation-based SMR, existing
studies do not provide formal treatment on the reputation
mechanism on SMR protocols, including the types of behaviours
affecting the reputation, the security properties of the reputation
mechanism, or the extra security properties of SMR using
reputation mechanisms.

In this paper, we provide the first formal study on the
reputation-based SMR. We define the security properties of the
reputation mechanism w.r.t. these misbehaviours. Based on the
formalisation of the reputation mechanism, we formally define the
reputation-based SMR, and identify a new property reputation-
consistency that is necessary for ensuring reputation-based SMR’s
safety. We then design a simple reputation mechanism that
achieves all security properties in our formal model. To demon-
strate the practicality, we combine our reputation mechanism to
the Sync-HotStuff SMR protocol, yielding a simple and efficient
reputation-based SMR at the cost of only an extra ∆ in latency,
where ∆ is the maximum delay in synchronous networks.

Index Terms—state machine replication, reputation,
blockchain.

I. INTRODUCTION

State machine replication (SMR) is a family of protocols
that allow a set of nodes to jointly maintain a consistent ledger,
even when a certain fraction of nodes are Byzantine. SMR
has shown promise in realising many decentralised and fault-
tolerant systems, especially blockchains [24], [28].

Despite its wide adoption, there have been many known
attacks on SMR protocols, such as equivocation where the
adversary votes on multiple conflicting blocks, withholding
where the adversary withholds votes or blocks, and flash
attacks [11] where the adversary enrols a large number of
its nodes to the system to exceed the fault tolerance capacity
temporarily. When the adversary does not exceed the proto-
col’s fault tolerance capacity, these attacks can lead to worse
communication complexity and/or latency. When the adversary
exceeds the protocol’s fault tolerance capacity, these attacks
can break the protocol’s safety and/or liveness.

‡ This research work was partially supported by the Shaanxi Natural
Science Basic Research Project (Grant No.2020JM-565), the Shaanxi In-
ternational Science and Technology Cooperation Program Project (Grant
No.2021KW-07). Zhiqiang Du is the corresponding author of this paper.

To defend against and limit the impact of these attacks,
many proposals [10], [20], [29] introduce the reputation mech-
anism to SMR protocols. In the real world, reputation mech-
anisms are used for increasing and decreasing the weight in
making certain decisions for honest and deviating participants,
respectively. It has been adopted in many real-world applica-
tions, such as E-commerce [1] and user-generated content [3],
where people will prefer merchants and online contents with
high reputation. When adapted to SMR protocols, the repu-
tation mechanism accumulates nodes’ reputations when they
follow the protocol honestly, and slashes nodes’ reputations
when they deviate from the protocol. The voting process in
reputation-based SMR protocols is then weighted by nodes’
reputations, making the adversary harder to launch attacks.
Proof-of-stake (PoS)-based blockchains [26] partially follow
the reputation approach, where a node’s stake determines its
voting power and can be slashed if it behaves maliciously.

A. Related work

Despite the promising features of reputation-based SMR,
existing proposals do not provide a formal treatment on the
proposed reputation mechanisms, and reputation mechanisms
for other protocols and applications cannot be directly adapted
to SMR due to the different design goals.
Reputation-based SMR. Existing reputation-based SMR pro-
posals focus on the SMR design, but neglect the formalisation
and design of the reputation mechanism. Specifically, they
informally discuss some behaviours that increase or reduce the
reputation, omitting a formal and complete treatment of these
behaviours and the formal security properties of the reputation
mechanism.

Guru [10] proposes a reputation mechanism for SMR, where
the protocol assigns nodes with reputations based on their be-
haviours, and elects a subset of nodes (called committee) based
on their reputations to execute consensus. RepuCoin [29] is
another reputation-based SMR proposal focusing on scalabil-
ity. Compared to Guru which is built upon traditional BFT-
style consensus, RepuCoin is built upon ByzCoin [21] where
nodes elect leaders and committees by solving proof-of-work
(PoW) puzzles, and the elected committee votes to finalise the
proposed blocks. RepuCoin accumulates nodes’ reputations if
they honestly proposing/voting blocks, and neglects the design
of slashing reputations upon misbehaviours. The authors also
note that the reputation mechanism can provide resistance
against flash attacks [11] where the adversary spawns a large

number of new nodes in the system to take over the consensus.
Kleinrock et al. [20] combines the reputation mechanism
to proof-of-stake (PoS)-based Nakamoto blockchains, where
nodes elect committees based on nodes’ reputations to finalise
blocks, and fall back to the vanilla PoS-based Nakamoto
consensus under liveness attacks.

While these proposals focus on the committee election
mechanisms that improves the protocol’s communication com-
plexity, they omit defining all the behaviours that determine
nodes’ reputations, and the necessary security properties of
such reputation mechanisms. In addition, Guru and RepuCoin
study the flash attack resistance provided via empirical exper-
iments rather than formal proofs, and thus cannot show their
security guarantee under all protocol parameters and deploy-
ment environments. More specifically, we compare some of
the existing Reputation-based SMRs and Sync-HotStuff [4]
with our work in table I.

Other reputation-based systems. There have been many
reputation mechanisms designed for other decentralised proto-
cols and applications, such as leader election [14], multiparty
computation [7], privacy-preserving systems [2], [17], [27],
and peer-to-peer networks [18], [23]. However, these reputa-
tion mechanisms concern different types of behaviours that
affect reputations in the targeted protocols and applications,
thus cannot be directly adapted to SMR. For example, these
protocols do not involve the voting process, while voting
is a major behaviour that can lead to attacks and affect
reputations in reputation-based SMR. In addition, privacy-
preserving systems and peer-to-peer networks do not enforce
nodes to have a consistent view on a node’s reputation, while
such consistency is crucial for reputation-based SMR where a
node’s reputation determines its voting power.

PoS-based blockchains with slashing support. Some PoS-
based blockchains support slashing: if a node is held account-
able due to misbehaviour, then its stake, and thus its voting
power, will be slashed. It can be considered as a special
case of reputation mechanisms where nodes’ voting power is
proportional to their financial stakes. However, the slashing
mechanism is still a new concept with limited formal studies
in the field. To the best of our knowledge, Tas et al. [26] is
the only formal study on PoS slashing, which is under the
permissionless setting.

B. Our contributions

In this paper, we fill this gap by providing the first formal
treatment of the reputation-based SMR. We explicitly define
the reputation mechanism and its security properties based
on malicious behaviours known in SMR, and formalise the
concept of reputation-based SMR. Our formalisation identifies
a new security property reputation-consistency that is neces-
sary for ensuring reputation-based SMR’s safety, while being
overlooked by existing literature. We then design a simple
reputation mechanism that achieves these security properties,
and combines it with the Sync-HotStuff [4] SMR protocol to
obtain a simple and efficient reputation-based SMR. Compared

to Sync-HotStuff, our reputation-based SMR only incurs an
extra ∆ in latency, where ∆ is the maximum delay in
synchronous networks.

Formalisation of reputation-based SMR (§III). We provide
the first formal treatment of the reputation-based SMR, with
an explicit formal definition on the reputation mechanism
and flash-attack resistance. For the formalisation of reputation
mechanisms, we start from characterising the types of be-
haviours that will affect the reputation. A node’s reputation is
then calculated from the protocol transcript that records these
behaviours, including the node’s historical block proposals
and votes. Honest behaviours increase the reputation, and
malicious behaviours will reduce the reputation.

We build our formalisation of reputation-based SMR based
on existing rich literature in SMR [4]–[6], [22]. Our formali-
sation identifies and formalises a security property reputation-
consistency, which is overlooked by previous studies but is
necessary for ensuring reputation-based SMR’s safety. The
reputation-consistency property specifies that all honest nodes
agree on the reputation values of other nodes, upon agreeing
on a block. Without reputation-consistency, the adversary can
make honest nodes to have conflicted views on some nodes’
reputations and thus the quorums and leaders, breaking the
protocol’s safety.

A new reputation mechanism for SMR (§IV). We design a
simple reputation mechanism that lies in our formal definition.
The reputation function evaluates a node’s reputation based
on its historical behaviours in proposing and voting blocks,
and employs well-understood functions in order to achieve the
properties in our formal model while making the reputation
value to lie in a certain interval [ϵ, 1], where ϵ is a sufficiently
small value close to zero.

A new reputation-based SMR (§V). By using our reputation
mechanism and the Sync-HotStuff SMR [4] as building blocks,
we propose a simple reputation-based SMR. Our reputation-
based SMR achieves the same performance in the best and
worst case and resists flash-attacks, at the cost of only an
extra ∆ in latency atop Sync-HotStuff. Central to our protocol
design, this extra ∆ allows all honest nodes to detect and agree
on accountable misbehaviours conducted by all Byzantine
nodes, achieving the reputation-consistency property. Table I
provides a comparison between our proposal and existing
reputation-based SMR protocols, as well as Sync-HotStuff that
we build upon.

II. MODEL OF STATE MACHINE REPLICATION

In this section, we provide the system model of state
machine replication (SMR) protocols.

A. System model

Nodes. Let P = {p1,, pn} be the set of n nodes in
the system. Each node pi owns a key pair (ski, pki), and
is uniquely identified by its public key pki in the system.
We assume a Public-Key Infrastructure (PKI) who has the

2

Table I: Comparison of existing reputation-based SMR protocols, Sync-HotStuff and our work.

System model Security Performance
Network
model

Fault
tolerance

Safety Liveness Flash attack
resistance

Comm. compl. Latency

Guru-PBFT Psync. 1/3 ✓ ✓ ✓ O(mn) ∼ O(m3 +mn) 3∆ ∼ tViewChange
†

RepuCoin Sync. 1/3 ✓ ✓ ✓ O(mn) 3∆ ∼ tNakamoto

Kleinrock et al. Sync. 1/2 ✓ ✓ ✗ O(mn) 3∆ ∼ tNakamoto

Sync-HotStuff Sync. 1/2 ✓ ✓ ✗ O(n2) 3∆ ∼ 4∆

This work Sync. 1/2 ✓ ✓ ✓ O(n2) 4∆

† The latency is calculated assuming the global stabilisation time (GST) in partial synchrony has passed;
Guru-PBFT [10]: In the best case when the leader is honest, the communication includes a PBFT within the committee (of which the size is

labelled as m) and broadcasting the final block by leader to all nodes, leading to O(mn + m2) and 3∆. Since mn ≥ m2, O(mn + m2)
asymptotically equals to O(mn). In the worst case when consecutive leaders are Byzantine, the communication includes view change protocols,
leading to O(m3 +mn) and tViewChange, where O(m3) comes from view change protocol within the committee, O(nm) comes form the new
view broadcast of new leader and tViewChange depends on the concrete view change protocol design.
RepuCoin [29]: Similar to Guru, in the best case, the communication includes a PBFT within the committee and broadcasting the final block

to all nodes, leading to O(mn) and 3∆. In the worst case when the leader of microblocks withholds blocks continuously, the tNakamoto is
parameterised by the security level [15], [16].
Kleinrock et al. [20]: In the best case when the reputation system is secure, the communication includes all-to-all communication among two

committees and broadcasting the final block to all nodes, leading to O(mn) and 3∆. In the worst case when the reputation system becomes
insecure, the system falls back to PoS-based Nakamoto blockchain, tNakamoto depends on concrete PoS-based blockchain design.
Sync-HotStuff [4]: The communication includes all-to-all broadcasts among all nodes, leading to O(n2) communication complexity. In the best

case, nodes take 3∆ to commit a block. In the worst case when the leader withholds blocks, nodes take 2∆ to abort the current view, and take
another 2∆ to enter the current view and commit a block, leading to 4∆ latency in total.

knowledge of all nodes’ public keys in order to prevent identity
spoofing.

Ledger. All nodes jointly maintain a ledger formed as a
blockchain, i.e., a chain of blocks. Transactions sent from
users are packaged in each block. A block Br at height r
is formed as Br = (h−, pk, txs), where h− = H(Br−1) is
the hash of the predecessor block Br−1, pk is the public key
of the block producer, txs is a set of transactions. We call two
blocks (Bi, Bj) at the same height, i.e., i = j, are conflicted
blocks. We call a block Br is a certified block, provided that
there is a set of sign votes on this block to form a quorum
certificate of nodes, a quorum certificate QC consist of more
than 1/2 voting power from nodes. We assume transactions
submitted from users are valid.

Protocol transcripts. Apart from the ledger that concerns
agreed transactions and protocol metadata, each node also
maintains the protocol transcripts locally in order to determine
other nodes’ reputations. Specifically, the protocol transcripts
include the set Mj of node pj’s proposed blocks and the set
Vj of pj’s votes on blocks.

Network model. We adopt the synchronous network model
where the adversary can delay the message delivery up to a
known upper bound ∆.

Adversary model. The adversary can corrupt f out of n
nodes, where n ≥ 2f + 1. Corrupted nodes can behave arbi-
trarily (including deviating from the protocol), while the other
honest nodes always follow the protocol. A corrupted node is
also called Byzantine node. The adversary is computationally
bounded, i.e., can only solve polynomial algorithms and thus
cannot break standard cryptographic primitives such as hash
functions and digital signatures. The adversary is static, i.e.,
it chooses set of f nodes to corrupt at the beginning of the
protocol and cannot choose to corrupt other nodes afterwards.

B. Security properties

A Byzantine fault tolerant (BFT) state machine replication
(SMR) protocol allows a set of nodes to maintain a linearisable
and consistent ledger of blocks akin to a single non-faulty
server. A BFT SMR protocol provides the following proper-
ties.

• Safety: Every two honest nodes do not commit different
blocks at the same height.

• Liveness: If a transaction is received by an honest node,
then the transaction will be eventually included in every
honest node’s ledger.

We briefly summarise possible attacks against these prop-
erties below.

Safety attacks. Typical attacks on SMR’s safety include
equivocation and private chain attacks. Equivocation means
that the adversary directs Byzantine nodes to send different
messages to different nodes, which may lead to disagreements
among nodes. Private chain attacks mean that the adversary
directs Byzantine nodes to work on a separate blockchain
privately while following the protocol. There are different
variants of private chain attacks, where grinding attacks are
a notable one. In the grinding attack [8], [19], the adversary
directs Byzantine nodes to “grind” (i.e., attempt to produce
blocks after) all known blocks.

Liveness attacks. Typical attacks on SMR’s liveness include
the aforementioned equivocation and withholding attacks.
Apart from safety, equivocation may prevent honest nodes
to make decisions forever, breaking the liveness. Withholding
means that the adversary directs Byzantine nodes to withhold
messages to certain nodes, which may also prevent them to
make decisions forever.

3

C. Performance metrics

BFT SMR concerns two performance metrics, namely com-
munication complexity and latency.

• Communication complexity: The total amount of data
(in bits) transferred to commit a block.

• Latency: The total amount of time taken to commit a
block.

We stress that the protocol may achieve different values on
these two metrics in best-case and worst-case executions.

III. REPUTATION-BASED STATE MACHINE REPLICATION

In this section, we extend the SMR model to provide a
formal definition of reputation-based SMR. We start from
analysing misbehaviours in SMR protocols (§III-A), then for-
malise the reputation function that gives each node a reputation
based on its historical (mis)behaviours (§III-B), and finally
combines the reputation function into the SMR model to obtain
the definition of the reputation-based SMR (§III-C).

A. Misbehaviours in SMR

A node’s reputation depends on its historical behaviours,
in which honest behaviours accumulate the reputation and
misbehaviours reduce the reputation. While honest behaviours
are specified by the protocol, we review misbehaviours in
synchronous SMR protocols based on existing works on
accountable Byzantine consensus [12], [13], [25]. We concern
two aspects of bad behaviours, namely the types of behaviours
(including block proposal and vote) and their reasons of be-
ing malicious (including equivocation, withholding, and other
behaviours deviating from the protocol specification).

Equivocating blocks/votes. Equivocation means that a node
performs behaviours conflicted with each other. Equivocating
blocks mean that a node, who is the leader of an epoch,
proposes multiple different blocks at the same height. Equiv-
ocating votes mean that a node votes for multiple different
blocks at the same height.

In order to detect equivocating blocks, a node needs to
receive two proposed blocks at the same height signed by
the same node. In order to detect equivocating votes, a node
needs to receive two votes on two different blocks at the same
height signed by the same node.

Withholding blocks/votes. Withholding means that a node
withholds messages that it should send according to the
protocol. Withholding blocks mean that a node, who is the
leader of an epoch, does not propose any block at this epoch.
Withholding votes mean that a node does not vote blocks
proposed by the leader.

In order to detect withholding blocks, a node needs to
ensure no other honest node has received any block in an
epoch, which usually requires an all-to-all broadcast. Detecting
withholding votes is challenging. There are two scenarios that
a node does not vote on time: 1) the node is Byzantine, and
2) the leader withholds its proposed block to a certain honest
node, making this node unable to vote for any block. An honest
node cannot distinguish between the two scenarios, where the

node is Byzantine in the first scenario and is honest in the
second scenario.

Malicious blocks/votes. Malicious blocks mean a non-leader
node proposes a block. Malicious votes mean a node votes for
a block that does not exist. Malicious blocks/votes will not
affect the normal execution of the SMR protocol, and can be
detected since the proposed block and vote carry the signature
from the Byzantine node.

B. Definition of Reputation function

Given the malicious behaviours, we then define the rep-
utation function fRep(·) for SMR, including its syntax and
security properties.

Definition 1 (Reputation function). Reputation function
fRep(ϵ, pkj ,Mj , Vj)→ µj takes input

• ϵ is initial reputation value for all nodes;
• pkj is node pj’s identity;
• Mj is the set of pj’s block proposals so far; and
• Vj is the set of pj’s votes so far,

and outputs the reputation value µj ∈ [ϵ, 1] of node j.
Function fRep satisfies the following properties:

• (Initial reputation value distribution) Giving any node
pj that has just entered the system an initial reputation
value ϵ, which is a sufficiently small value close to 0.

• (Malicious votes reduces reputation) For any tu-
ple (Vj , V̂j), if Vj records more malicious votes
of node j than V̂j , then fRep(ϵ, pkj ,Mj , Vj) <
fRep(ϵ, pkj ,Mj , V̂j).

• (Equivocating/malicious/withholding blocks reduces
reputation) For any tuple (Mj , M̂j), if Mj records more
equivocating blocks of node j than M̂j , or Mj records
more malicious blocks of node j than M̂j , or Mj records
fewer valid blocks of node j, then fRep(ϵ, pkj ,Mj , Vj) <
fRep(ϵ, pkj , M̂j , Vj).

• (Honest votes increase reputation) For any tuple
(Vj , V̂j), if Vj records more votes on blocks than V̂j ,then
fRep(ϵ, pkj ,Mj , Vj) > fRep(ϵ, pkj ,Mj , V̂j).

• (Honest blocks increase reputation) For any
tuple(Mj , M̂j), if Mj records more valid blocks than
M̂j ,then fRep(ϵ, pkj ,Mj , Vj) > fRep(ϵ, pkj , M̂j , Vj).

C. Definition of reputation-based SMR

We adapt the definition of SMR [4]–[6] to define a
reputation-based SMR. Compared to the traditional SMR,
reputation-based SMR replaces the one-man-one-vote design
with weighted voting by reputation. In addition, reputation-
based SMR requires a third property reputation-consistency,
where honest nodes should have the same view on other nodes’
reputations. Existing reputation-based SMR protocols [10],
[20], [29] provide proofs on reputation-consistency implicitly
within their security proofs, omitting its explicit definition.

Definition 2 (Reputation-based SMR). A reputation-based
SMR protocol driven by the majority of voting power (rep-
utation) in the system, and the voting power of each node

4

The procedures of fRep(ϵ, pkj ,Mj , Vj)→ µj :

S(Mj) = max(0, |Mj | − ξw|Withholding(Mj)|
− ξe|Equivocating(Mj)|)− ξmp|Malicious(Mj)|)

S(Vj) = max(0, |Vj | − ξmv|Malicious(Vj)|)
µj = ϵ+ tanh [γ(S(Vj) + S(Mj))]

where
• ξw is the penalty factor of withholding blocks
• ξe is the penalty factor of equivocating blocks
• ξmp is the penalty factor of malicious blocks
• ξmv is the penalty factor of malicious votes
• γ is the factor of increasing reputation
• S(Vj) is the scoring function for node voting

behavior
• S(Mj) is the scoring function for node block

proposal behavior

Figure 1: reputation function fRep(ϵ, pkj ,Mj , Vj)→ µj

determined by their behavior. When the adversary’s nodes that
have less than half of the total reputation (which is always true
when the majority of nodes are honest), the reputation-based
SMR provides the following three properties.

• Safety: Every two honest nodes do not commit different
blocks at the same height.

• Reputation-consistency: At the same height, every two
honest nodes do not have different reputation values for
a node.

• Liveness: If a transaction is received by an honest node,
then the transaction will be eventually included in every
honest node’s ledger.

Flash attack resistance. In addition, we consider SMR
protocols that resist against flash attacks [11], [29], where the
adversary manages to enrol a large number of its nodes into the
system, so that it can temporarily exceed the fault tolerance
capacity and break some security properties. Guru [10] and
RepuCoin [29] observe that the reputation mechanism can
provide resistance against flash attacks for SMR protocols.

Definition 3 (Flash attack resistance). A BFT SMR protocol
resists against flash attacks if it can ensure safety, reputation-
consistency and liveness for a certain period of time under an
adversary who can corrupt more than f out of n nodes, where
n ≥ 2f + 1.

IV. CONSTRUCTION OF THE REPUTATION FUNCTION

In this section, we provide a simple construction of the
reputation function that satisfies all properties defined in
§III-C.

A. Construction

Figure 1 shows our construction of the reputation function.
Intuitively, the function scores a node’s proposing and voting

behaviours, combines them to a single value, and finally
normalises it to [ϵ, 1]. The function takes node pj’s public
key pkj , block proposal set Mj and vote set Vj as input, and
computes as follows to output the reputation value µj of pj1

Scores of block proposal/voting behaviours. All misbe-
haviours can be obtained from parsing Mj and Vj . We define
score functions S(Mj) and S(Vj) for scoring proposing and
voting behaviours, respectively. S(Mj) considers the number
|Withholding(Mj)|, |Equivocating(Mj)|, |Malicious(Mj)| of
withholding, equivocating and malicious blocks, respectively,
and applies a penalty factor ξw, ξe and ξmp for each of them.
S(Vj) considers the number |Malicious(Vj)| of malicious
votes, and applies a penalty factor ξmv as well. We use the
total number of block proposals/votes to subtract the number
of each misbehaviours multiplied by its penalty factor. S(Mj)
and S(Vj) specifies the smallest possible reputation value of
zero by using function max(·).
Combining block proposal/voting scores together. We then
combine the scores S(Mj) and S(Vj) to a single value, and
normalise it to the final reputation value µj . Specifically, we
add S(Mj) and S(Vj) together and multiply it with a factor
γ. where γ controls the slope of the reputation function w.r.t.
behaviours. After that, we use function tanh(·) to normalise
the value γ(S(Vj)+S(Mj)) to internal [ϵ, 1], yielding the final
reputation value µj .

B. Security analysis

We show that our reputation function achieves all the
properties defined in §III-B.

Initial reputation value distribution. Since a newly joined
node pj does not have any block proposal or vote, S(Mj) and
S(Vj) will be zero, and thus tanh[γ(S(Vj) + S(Mj))] = 0.

Malicious votes reduces reputation. If Vj records more
malicious votes of node j than V̂j , then |Malicious(Vj)| >
|Malicious(V̂j)|. Since ξmv > 1, S(Vj) < S(V̂j), leading to
smaller reputation.

Equivocating/malicious/withholding blocks reduces repu-
tation. Similar to above, if Mj records more equivocating
blocks of node j than M̂j , or Mj records more malicious
blocks of node j than M̂j , or Mj records fewer valid blocks
of node j, then S(Mj) < S(M̂j) with ξw, ξe, ξmp > 1, leading
to smaller reputation.

Honest block proposals/votes increase reputation. If Vj

records more votes on blocks than V̂j or Mj records more valid
blocks than M̂j , then S(Vj) > S(V̂j) or M(Vj) > M(V̂j),
respectively. Either case will lead to a larger reputation.

V. CONSTRUCTION OF THE REPUTATION-BASED SMR
PROTOCOL

In this section, we provide a reputation-based SMR pro-
tocol. We build our protocol upon the reputation mechanism
in §IV. Our protocol achieves the same performance in the

1In this paper, we do not specify whether to remove nodes with 0 reputation,
because their presence does not affect the security properties of our protocol.

5

best and worst case and resists flash-attacks, at the cost of
only an extra ∆ in latency atop Sync-HotStuff. Central to
our protocol design, this extra ∆ allows all honest nodes
to detect and agree on accountable misbehaviours conducted
by all Byzantine nodes, achieving the reputation-consistency
property.

A. Design overview

Given the rich literature in the field of synchronous SMR
protocols, we consider building our reputation-based SMR
based on one of them. For simplicity, we choose Sync-
HotStuff [4], a synchronous SMR protocol that is specialised
for simplicity and achieves practical performance, i.e., latency
of 3∆ and communication complexity of O(n2).

The first challenge of building a reputation-based SMR is
to ensure the reputation-consistency property, which is not
considered in traditional SMR protocols. To ensure reputation-
consistency, nodes have to share a consistent view on all
nodes’ historical behaviours, especially misbehaviours. Tradi-
tional SMR protocols usually aim at identifying misbehaviours
that affect protocol execution, neglecting other misbehaviours
such as malicious blocks and votes. For example, Sync-
HotStuff only allows nodes to identify equivocating blocks and
withholding blocks, but not the others summarised in §III-A.

Another challenge is to distinguish between honest be-
haviours and misbehaviours. We observe that only certain
misbehaviours can be irrefutably identified before all honest
nodes have committed the block in an epoch. If there are some
honest nodes that have not committed a block, then these nodes
cannot distinguish between two equivocating blocks, until one
of them reaches a quorum of votes.

Given the above two challenges, it is necessary to add
an extra phase after the Byzantine broadcast. This phase
will be dedicated for allowing nodes to consistently identify
misbehaviours. Specifically, for those misbehaviours that can
be irrefutably identified by the adversary’s messages (such as
equivocating blocks and malicious blocks/votes), nodes will
broadcast the evidences of these misbehaviours in this phase.

Last, since reputation-based SMR demands reputation-
weighted voting, we adapt the Byzantine broadcast of Sync-
HotStuff to such a weighted setting.

B. Primitives

Our protocol use the Sync-HotStuff as the building block.
Sync-HotStuff employs two primitives, namely round-robin
leader election and Byzantine broadcast.

Round-robin leader election. Round-robin leader election
allows nodes to elect a leader for each epoch. The round-
robin leader election algorithm takes the last block as input,
and outputs a random leader from all nodes excluding last f
leaders and misbehaving leaders.

Byzantine broadcast. Byzantine broadcast is a protocol that
allows a certain node (called sender) to consistently distribute
a message among n nodes, in which up to f nodes are
Byzantine.

Definition 4 (Byzantine broadcast [5]). Byzantine broadcast
satisfies the following properties:

• (Agreement) If two honest nodes commit value B and B′

respectively, then B = B′ .
• (Termination) All honest nodes eventually commit a

value.
• (Validity) If the designated sender is honest, then all

honest nodes commit on the sender’s value.

We use the Byzantine Broadcast (BB) of the Sync-
HotStuff [4], the state-of-the-art synchronous SMR protocol
with O(n2) communication complexity and 3∆ latency. To
apply the reputation mechanism, we adapt it to the weighted
setting, where voting power of a node is in proportional to its
reputation in the system. That is, committing a block requires
more than half of the total voting power.

C. Our protocol

Based on the above primitives, we provide our reputation-
based SMR protocol. Figure 3 provides the full protocol
specification. Figure 2 depicts the protocol execution under
normal case and under misbehaviours. The protocol consists
of three phases, namely refresh reputation, generate block,
broadcast evidence. We describe their processes through an
epoch r in a node pi’s view.
Refresh reputation. At the beginning of each epoch, for
every node pj , node pi refreshes its reputation by µj ←
fRep(pkj ,Mj , Vj), where (Mj , Vj) are determined by node
pj’s block proposal and voting behaviors, and åre updated
though the (non-blocking) evidence collection in the previous
epoch.
Generate block. This phase is identical to the Sync-HotStuff
protocol, where nodes elect a leader to propose a block and
trigger a BB over this block. Specifically, nodes execute the
round-robin leader election function to elect a leader pkL.
If node pi is the leader (i.e., pki = pkL), then it proposes
block Br and triggers BB over Br. Otherwise, when node pi
receives the block Br from leader pkL, pi verifies block Br’s
validity. If Br is valid, then pi broadcasts it, votes for block Br

following the BB protocol. When the timer expires, if detecting
misbehaviours of malicious/equivocating/withholding blocks,
then node pi commits an empty block ⊥, and counts no vote
for any node in this epoch. Otherwise, node pi commits block
Br and counts one vote every node. Note that we set the timer
to be 4∆ and Sync-HotStuff’s BB protocol has the latency of
3∆. The last ∆ will be used for broadcasting evidences for
misbehaviours, which will be explained below.
Evidence broadcast. This phase happens when the BB
protocol terminates and Timer has a ∆ remaining. It fo-
cuses on broadcasting evidences of nodes’ misbehaviours,
such that nodes have a consistent view on all nodes’ his-
torical behaviours. The evidences include those of malicious
votes/blocks, equivocating blocks and withholding blocks,
each described below. Note that equivocating and withholding
votes cannot be detected as analysed in §III-A, and withhold-
ing block can be detected without an evidence.

6

Leader

Node1

Node2

Node3

Node4

(Byzantine)

Block

Proposal

Block

Proposal Vote

Propose Forward Vote Evidence

broadcast

Refresh reputation

(a) Normal execution

Leader

(Byzantine)

Node1

Node2

Node3

Equivocating

proposal

Equivocating

poposal

Propose Forward Vote

Node4

(Byzantine) Evidence

broadcast

Refresh reputation

(b) Equivocating block

Withhodling

proposal

Node4

Leader

（Byzantine）

Node1

Node2

Node3

Propose Forward Vote Evidence

broadcast

Refresh reputation

(c) Withholding block

Leader

Node1

Node2

Node3

Node4

(Byzantine) Propose Forward Vote

Block

proposal

Malicious

proposal

Evidence

broadcast

Refresh reputation

(d) Malicious block

Leader

Node1

Node2

Node3

Block

proposal

Propose Forward Vote

Node4

(Byzantine)

Malicous

 votes

Evidence

broadcast

Refresh reputation

(e) Malicious vote

Figure 2: Different execution scenarios of our reputation-based SMR.

• (Equivocating block, Figure 2b) If node pi receive
two different blocks (B′

r, Br) with signatures (σ′, σ)
both signed by the leader pkL, then node pi considers
them as equivocating blocks and informs other nodes by
broadcasting

⟨Blame-Equivocating-Blocks, pkL, Br, B
′
r, σ, σ

′⟩i

where ⟨·⟩i means a message signed by node pi. Since the
leader is Byzantine, node pi will commit an empty block
⊥ when Timer expires.

• (Withholding block, Figure 2c) If node pi receives no
block proposed by the leader after the vote phase, then
this means that all honest nodes do not receive the leader
and the leader is withholding blocks. In this case, pi
commit empty block ⊥ as leader’s block when Timer
expires.

• (Malicious block, Figure 2d) If node pi receives a block
B′

r proposed by a non-leader node pj with signature σj ,
then pi considers this block as a malicious block and
informs other nodes by broadcasting

⟨Blame-Malicious-Block, pkj , B′
r, σj⟩i

• (Malicious vote, Figure 2e) If node pi receives a signa-
ture σj associated with block B′

r ̸= Br where Br is the
honest block, then pi considers B′

r as a malicious vote
and informs other nodes by broadcasting

⟨Blame-Malicious-Vote, pkj , B′
r, σj⟩i

Note that, these two misbehaviours cannot affect the
normal operation of our protocol, thus node pi will
commit the block proposed by leader.

Non-blocking evidence collection. When timer Timer ex-
pires, node pi updates the reputations of each node pj by
processing their block proposal set Mi,j and vote set Vi,j as
follows.

• (Malicious vote/block) If pi receives an evidence of a
malicious block (resp. vote) from node pj , then pi records
this malicious block (resp. vote) in Mij (resp. Vi,j).

• (Equivocating block) If pi receives an evidence of
equivocating blocks from leader node pj , then pi records
these equivocating blocks in Mi,j and ignores all votes
received in this epoch.

• (Withholding block) If pi does not receive the block
from leader node pj throughout this epoch, then it records
an empty block (⊥) in Mi,j and ignores all votes received
in this epoch.

D. Security analysis

Lemma 1 (Reputation consistency). If BB satisfies agreement
and termination, then when the Timer expires, for any node pz
and any two honest nodes (pi, pj), (Mi,z, Vi,z) = (Mj,z, Vj,z).

Proof. For the sake of contradiction, assuming there exists two
honest nodes pi and pj such that (Mi,z, Vi,z) ̸= (Mj,z, Vj,z)
when the Timer expires. As BB satisfies agreement and termi-
nation, in each epoch, any two honest nodes either commit the
same block proposed by a leader, or commit an empty block
(i.e., ⊥).

7

Let r be the current epoch. Upon timer Timerr−1 of last epoch r − 1 expires, node pi executes as follows.
1) Refresh reputations and set timer. For every node pj , node pi executes µj ← fRep(pkj ,Mj , Vj) to refreshes

node pj’s reputation µj . Node pi sets a timer Timerr of 4∆.
2) Generate block. Node pi executes leader election, Byzantine broadcast and commit steps as follows.

a) Leader election. Node pi executes the round-robin leader election to elect a leader pkL, then checks if it
is elected as leader L by checking whether pki = pkL.

b) Byzantine broadcast. If pi is the elected leader, then pi locally samples a set of transactions txs and
proposes block Br = (H(Br−1), pki, txs), and triggers BB over Br with other nodes. Otherwise, pi waits
for the leader block proposal and follows BB.

c) Block commit. When the Timerr expires, if detecting misbehaviours of equivocating/withholding blocks,
then node pi commits an empty block ⊥, and counts no vote for any node in this epoch. Otherwise, node
pi commits block Br and counts one vote every node.

3) Evidence broadcast. When Timerr remains ∆, node pi executes as follows.
• Detect malicious vote/block: If node pi receives a signature σj associated with block B′

r ̸= Br,
then pi broadcasts ⟨Blame-Malicious-Vote, pkj , B′

r, σj⟩i to other nodes. In addition, if node pi
receives a block B′

r proposed by pj with signature σj is not the leader of epoch r, then broadcasts
⟨Blame-Malicious-Block, pkj , B′

r, σj⟩i.
• Detect equivocating block. If node pi receives two different blocks (Br, B

′
r) with signatures (σr, σ

′
r) signed

by the leader pkL of epoch r, node pi broadcasts ⟨Blame-Block-Equivocation, pkL, Br, B
′
r, σr, σ

′
r⟩i

to all nodes.
• Detect withholding block. if node pi receives no block, then Mi,L will not record any block proposed by

the current leader L.
4) (Non-blocking) Evidence collection Upon receiving any signature σj , node pi adds it to Vi,j . Upon receiving

any block Br ̸=⊥ proposed by node pj , node pi adds it to Mi,j .

Figure 3: Specification of our reputation-based SMR protocol.

If the committed block is ⊥, then this means that the leader
equivocates or withholds the block, both can be detected by
at least one honest node when Timer has ∆ remaining. After
this ∆, all honest nodes will be informed of the equivocation
or withholding and thus update their local sets, contradicting
to our assumption.

If the committed block is not empty, then there can be two
possible scenarios: 1) there exists no misbehaviour, 2) there
exists misbehaviours that do not affect protocol execution,
which can only be malicious block or malicious vote.

• Case 1: when Timer expires, all honest nodes update
their local sets consistently without recording any misbe-
haviour, contradicting to our assumption.

• Case 2: At the last ∆, all honest nodes will be informed
of the malicious block and/or vote and update their local
sets respectively, contradicting to our assumption.

Thus, if the adversary can break reputation-consistency
of our reputation-based protocol, then it has to break the
agreement or termination of the BB protocol, which only
happens with negligible probability.

Lemma 2 (Safety). If the BB protocol satisfies agreement,
then our reputation-based SMR protocol satisfies safety.

Proof. For the sake of contradiction, assuming the reputation-
based SMR protocol does not satisfy safety. That is, there

exists an epoch r where two honest nodes commit different
blocks B ̸= B′. Given the reputation mechanism, for each
honest node and Byzantine node, the honest node’s reputation
is no less than that of the Byzantine node. As there are more
than 1

2 honest nodes in the system, honest nodes control more
than 1

2 voting power in the system. Under this setting, the
BB protocol satisfies agreement. Therefore, if they commit
block B and B′ in epoch r, then B = B′, contradicting to
our assumption. Thus, if the adversary can break the safety
of our our reputation-based SMR protocol, then it has to
corrupt voting power in network more than 1

2 or break BB’s
agreement, which only has negligible probability.

Lemma 3 (Liveness). If the BB protocol satisfies termination,
then our reputation-based SMR protocol satisfies liveness.

Proof. For the sake of contradiction, assuming the protocol
does not satisfy liveness. That is, there exists a transaction
that is received by an honest node in epoch r, but eventually
is not committed in every honest node’s ledger. As the voting
power of byzantine nodes less than 1

2 . The leader is either
honest or Byzantine. If the leader is honest, then the leader
will propose a block including his transaction to all nodes, as
BB protocol satisfies termination, more than 1

2 honest voting
power will commit this block. If the leader is Byzantine, then
it either 1) follows the protocol, 2) withholds the block, and

8

3) proposes multiple conflicting blocks.
• Case 1: This case is similar with the honest leader case;
• Case 2/3: by termination, nodes will commit an empty

block and enter the next epoch.
With round-robin, the probability that consecutive leaders
are Byzantine decreases exponentially with the number of
consecutive epochs, as analysed in [9]. Thus, eventually, there
will be an honest leader who will commit all transactions
received by honest nodes, contradicting to the assumption.
Thus, if the adversary can break the liveness of our reputation-
based SMR protocol, then it has to corrupt voting power in
network more than 1

2 or break BB’s termination, which only
has negligible probability.

E. Flash attack resistance analysis
Recall that the adversary is static, which means that the set

of Byzantine nodes does not change throughout the execution.
After a sufficient long execution, the average reputation of the
honest nodes can be infinitely close to 1. Base on this, we
assume a sufficient long execution with f + 1 honest nodes
and f Byzantine nodes, and assume the average reputation of
Byzantine nodes is η < 1. Thus, the total voting power of
honest nodes (resp. Byzantine nodes) is f + 1 (resp. ηf). In
order to break safety or liveness, the adversary needs f +1−
ηf = (1− η)f + 1 extra voting power.

Lemma 4 (Reputation accumulation). Let fRep(·) be our
reputation function defined in §IV-A. Assuming all existing n
nodes behave honestly. If x nodes newly join the system and
honestly follow the protocol for r epochs, then the reputation
value µj for each pj of these nodes will be

µj = ϵ+ tanh

[
(n+ x+ 1)γr

n+ x

]
Proof. When a node pj newly joins the system, its reputation
is 0. During r epochs, it will vote for r times, and on average
will be elected as leader and propose a block for r

n+x times,
where n is the number of existing nodes and x is the number
of newly joined nodes. Thus, S(Vj) will become r and S(Mj)
will become r

n+x , leading to reputation value

µj = ϵ+ tanh

[
γ(r +

r

n+ x
)

]
= ϵ+ tanh

[
(n+ x+ 1)γr

n+ x

]
.

Lemma 5 (Flash attack resistance, quantified in epochs). In
order to launch a flash attack, the adversary needs

x =
(1− η)f + 1

ϵ+ tanh
[
(n+x+1)γr

n+x

]
new nodes to join the system and behave honestly for r epochs.

Proof. In order to launch the flash attack, the adversary needs
to gain extra voting power of (1− η)f + 1. By Lemma 4, to
do so in r epochs, the adversary needs

(1− η)f + 1

µj
=

(1− η)f + 1

ϵ+ tanh
[
(n+x+1)γr

n+x

]

new nodes to behave honestly for r epochs.

Given that r consecutive epochs take t = 4∆r, we have
r = t

4∆ , and thus the following corollary.

Corollary 1 (Flash attack resistance, quantified in time). In
order to launch a flash attack, the adversary needs

x =
(1− η)f + 1

ϵ+ tanh
[
(n+x+1)γt
4∆(n+x)

]
new nodes to join the system and behave honestly for a time
period of t.

F. Performance analysis

Communication complexity. Recall that Sync-HotStuff has
the communication complexity of O(n2). Since the extra
evidence broadcast phase costs at most O(n2) (when malicious
blocks/votes happen), our protocol also achieves O(n2). That
is, our protocol incurs no asymptotic communication complex-
ity compared to Sync-HotStuff.

Latency. Recall that Sync-hotStuff commits a block for every
3∆. With the extra evidence broadcast phase, our protocol
commits a block for every 4∆, leading to the latency of 4∆.

VI. CONCLUSION

This paper has provided the first formal treatment on the
reputation-based SMR, a proven secure reputation mechanism
for SMR, and an efficient reputation-based SMR protocol
based on Sync-HotStuff.

There are still several open challenges in this field. First, we
consider the implementation and experimental evaluation of
our proposed reputation-based SMR as a future work. Another
promising direction is to extend our block to partially syn-
chronous networks. In addition, while this work considers the
permissioned setting with a fixed set of nodes, the reputation
mechanism in the permissionless setting remains as an open
challenge.

REFERENCES

[1] Amazon. https://www.amazon.com/
[2] Anonrep
[3] Youtube. https://www.youtube.com/
[4] Abraham, I., Malkhi, D., Nayak, K., Ren, L., Yin, M.: Sync hotstuff:

Simple and practical synchronous state machine replication. In: 2020
IEEE Symposium on Security and Privacy (SP). pp. 106–118. IEEE
(2020)

[5] Abraham, I., Nayak, K., Ren, L., Xiang, Z.: Byzantine agreement,
broadcast and state machine replication with near-optimal good-case
latency. arXiv preprint arXiv:2003.13155 (2020)

[6] Abraham, I., Nayak, K., Ren, L., Xiang, Z.: Good-case latency of
byzantine broadcast: A complete categorization. In: Proceedings of the
2021 ACM Symposium on Principles of Distributed Computing. pp.
331–341 (2021)

[7] Asharov, G., Lindell, Y., Zarosim, H.: Fair and efficient secure multiparty
computation with reputation systems. In: International Conference on
the Theory and Application of Cryptology and Information Security.
pp. 201–220. Springer (2013)

[8] Bagaria, V., Dembo, A., Kannan, S., Oh, S., Tse, D., Viswanath, P.,
Wang, X., Zeitouni, O.: Proof-of-stake longest chain protocols: Security
vs predictability. arXiv preprint arXiv:1910.02218 (2019)

9

https://www.amazon.com/
https://www.youtube.com/

[9] Bhat, A., Shrestha, N., Luo, Z., Kate, A., Nayak, K.: Randpiper–
reconfiguration-friendly random beacons with quadratic communication.
In: Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security. pp. 3502–3524 (2021)

[10] Biryukov, A., Feher, D., Khovratovich, D.: Guru: Universal reputation
module for distributed consensus protocols. Cryptology ePrint Archive
(2017)

[11] Bonneau, J., Felten, E.W., Goldfeder, S., Kroll, J.A., Narayanan, A.:
Why buy when you can rent? bribery attacks on bitcoin consensus (2016)

[12] Civit, P., Gilbert, S., Gramoli, V.: Polygraph: Accountable byzantine
agreement. In: 2021 IEEE 41st International Conference on Distributed
Computing Systems (ICDCS). pp. 403–413. IEEE (2021)

[13] Civit, P., Gilbert, S., Gramoli, V., Guerraoui, R., Komatovic, J., Milose-
vic, Z., Serendinschi, A.: Crime and punishment in distributed byzantine
decision tasks (extended version). Cryptology ePrint Archive (2022)

[14] Cohen, S., Gelashvili, R., Kogias, L.K., Li, Z., Malkhi, D., Son-
nino, A., Spiegelman, A.: Be aware of your leaders. arXiv preprint
arXiv:2110.00960 (2021)

[15] Gaži, P., Ren, L., Russell, A.: Practical settlement bounds for proof-of-
work blockchains. Cryptology ePrint Archive (2021)

[16] Guo, D., Ren, L.: Bitcoin’s latency–security analysis made simple. arXiv
preprint arXiv:2203.06357 (2022)

[17] Hasan, O., Brunie, L., Bertino, E.: Privacy-preserving reputation systems
based on blockchain and other cryptographic building blocks: A survey.
ACM Computing Surveys (CSUR) 55(2), 1–37 (2022)

[18] Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The eigentrust al-
gorithm for reputation management in p2p networks. In: Proceedings
of the 12th international conference on World Wide Web. pp. 640–651
(2003)

[19] Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: A prov-
ably secure proof-of-stake blockchain protocol. In: Annual international
cryptology conference. pp. 357–388. Springer (2017)

[20] Kleinrock, L., Ostrovsky, R., Zikas, V.: Proof-of-reputation blockchain
with nakamoto fallback. In: International Conference on Cryptology in
India. pp. 16–38. Springer (2020)

[21] Kogias, E.K., Jovanovic, P., Gailly, N., Khoffi, I., Gasser, L., Ford, B.:
Enhancing bitcoin security and performance with strong consistency via
collective signing. In: 25th usenix security symposium (usenix security
16). pp. 279–296 (2016)

[22] Malkhi, D., Reiter, M.: Byzantine quorum systems. In: Proceedings of
the twenty-ninth annual ACM symposium on Theory of computing. pp.
569–578 (1997)

[23] Marti, S., Garcia-Molina, H.: Taxonomy of trust: Categorizing p2p
reputation systems. Computer Networks 50(4), 472–484 (2006)

[24] Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Decen-
tralized Business Review p. 21260 (2008)

[25] Sheng, P., Wang, G., Nayak, K., Kannan, S., Viswanath, P.: Bft protocol
forensics. In: Proceedings of the 2021 ACM SIGSAC conference on
computer and communications security. pp. 1722–1743 (2021)

[26] Tas, E.N., Tse, D., Yu, F., Kannan, S.: Babylon: Reusing bitcoin mining
to enhance proof-of-stake security. arXiv preprint arXiv:2201.07946
(2022)

[27] Wang, X.O., Cheng, W., Mohapatra, P., Abdelzaher, T.: Artsense:
Anonymous reputation and trust in participatory sensing. In: 2013
Proceedings IEEE INFOCOM. pp. 2517–2525. IEEE (2013)

[28] Wood, G., et al.: Ethereum: A secure decentralised generalised transac-
tion ledger. Ethereum project yellow paper 151(2014), 1–32 (2014)

[29] Yu, J., Kozhaya, D., Decouchant, J., Esteves-Verissimo, P.: Repucoin:
Your reputation is your power. IEEE Transactions on Computers 68(8),
1225–1237 (2019)

10

	Introduction
	Related work
	Our contributions

	Model of state machine replication
	System model
	Security properties
	Performance metrics

	Reputation-based state machine replication
	Misbehaviours in SMR
	Definition of Reputation function
	Definition of reputation-based SMR

	Construction of the reputation function
	Construction
	Security analysis

	Construction of the reputation-based SMR protocol
	Design overview
	Primitives
	Our protocol
	Security analysis
	Flash attack resistance analysis
	Performance analysis

	Conclusion
	References

