14 research outputs found

    P bodies promote stress granule assembly in Saccharomyces cerevisiae

    Get PDF
    Recent results indicate that nontranslating mRNAs in eukaryotic cells exist in distinct biochemical states that accumulate in P bodies and stress granules, although the nature of interactions between these particles is unknown. We demonstrate in Saccharomyces cerevisiae that RNA granules with similar protein composition and assembly mechanisms as mammalian stress granules form during glucose deprivation. Stress granule assembly is dependent on P-body formation, whereas P-body assembly is independent of stress granule formation. This suggests that stress granules primarily form from mRNPs in preexisting P bodies, which is also supported by the kinetics of P-body and stress granule formation both in yeast and mammalian cells. These observations argue that P bodies are important sites for decisions of mRNA fate and that stress granules, at least in yeast, primarily represent pools of mRNAs stalled in the process of reentry into translation from P bodies

    Mutations in the Saccharomyces cerevisiae LSM1 Gene That Affect mRNA Decapping and 3′ End Protection

    No full text
    The decapping of eukaryotic mRNAs is a key step in their degradation. The heteroheptameric Lsm1p–7p complex is a general activator of decapping and also functions in protecting the 3′ ends of deadenylated mRNAs from a 3′-trimming reaction. Lsm1p is the unique member of the Lsm1p–7p complex, distinguishing that complex from the functionally different Lsm2p–8p complex. To understand the function of Lsm1p, we constructed a series of deletion and point mutations of the LSM1 gene and examined their effects on phenotype. These studies revealed the following: (i) Mutations affecting the predicted RNA-binding and inter-subunit interaction residues of Lsm1p led to impairment of mRNA decay, suggesting that the integrity of the Lsm1p–7p complex and the ability of the Lsm1p–7p complex to interact with mRNA are important for mRNA decay function; (ii) mutations affecting the predicted RNA contact residues did not affect the localization of the Lsm1p–7p complex to the P-bodies; (iii) mRNA 3′-end protection could be indicative of the binding of the Lsm1p–7p complex to the mRNA prior to activation of decapping, since all the mutants defective in mRNA 3′ end protection were also blocked in mRNA decay; and (iv) in addition to the Sm domain, the C-terminal domain of Lsm1p is also important for mRNA decay function

    Analysis of chimeric mRNAs derived from the STE3

    No full text

    Identification and Analysis of the Interaction between Edc3 and Dcp2 in Saccharomyces cerevisiae▿ †

    No full text
    Cap hydrolysis is a critical control point in the life of eukaryotic mRNAs and is catalyzed by the evolutionarily conserved Dcp1-Dcp2 complex. In Saccharomyces cerevisiae, decapping is modulated by several factors, including the Lsm family protein Edc3, which directly binds to Dcp2. We show that Edc3 binding to Dcp2 is mediated by a short peptide sequence located C terminal to the catalytic domain of Dcp2. This sequence is required for Edc3 to stimulate decapping activity of Dcp2 in vitro, for Dcp2 to efficiently accumulate in P-bodies, and for efficient degradation of the RPS28B mRNA, whose decay is enhanced by Edc3. In contrast, degradation of YRA1 pre-mRNA, another Edc3-regulated transcript, occurs independently from this region, suggesting that the effect of Edc3 on YRA1 is independent of its interaction with Dcp2. Deletion of the sequence also results in a subtle but significant defect in turnover of the MFA2pG reporter transcript, which is not affected by deletion of EDC3, suggesting that the region affects some other aspect of Dcp2 function in addition to binding Edc3. These results raise a model for Dcp2 recruitment to specific mRNAs where regions outside the catalytic core promote the formation of different complexes involved in mRNA decapping

    Identification of NAD +

    No full text
    corecore