595 research outputs found

    Significance of the biodurability of man-made vitreous fibers to risk assessment.

    Get PDF
    It is generally agreed that the biodurability of man-made vitreous fibers is a major factor for the characterization of potential health effects. As there is currently no standardization of experimental protocols to determine biodurabilty, the results of the clearance assays have not been used up to now for regulatory purposes. Methods used to analyze biodurability in animal models are short-term inhalational exposure and intratracheal instillation of rat respirable fibers. Both test methods have strengths and limitations for regulatory purposes. We outline recommended procedures for standardized biodurability assays that can be used to compare different fiber types. In animal experiments, biodurability is difficult to separate from biopersistence, as mucociliary and macrophage-mediated clearance occur simultaneously with dissolution and disintegration. For intratracheal instillation, a sized rat respirable sample must be used. Precautions should be taken to prevent aggregation of fibers in the lungs. Although from a scientific point of view questions remain about quantifying the influence of fiber length, diameter, dose, and exposure route, consistent data on the biodurability of vitreous glass fibers are available which may be used for regulatory purposes

    Investigation of the biodurability of wollastonite and xonotlite.

    Get PDF
    The in vivo durability of wollastonite materials, coated and uncoated, and of xonotlite was tested. Wollastonite is an anhydrous natural silicate and xonotlite is a hydrated synthetic calcium silicate. UICC crocidolite was used as a positive control with high durability. Using a dry-sizing technique, fractions from the stock materials were prepared according to the definition of "thoracic particulate mass" and "respirable particulate mass" of the American Conference of Governmental Industrial Hygienists. Fibers were instilled intratracheally into female Wistar rats, and the evenness of their distribution in the lung was checked by scanning electron microscopy (SEM). After serial sacrifices at 2 and 14 days, 1, 3, and 6 months, and low temperature ashing of the lung, the fibers were analyzed by SEM. The number and size distribution of fibers were investigated. The total number of crocidolite fibers decreased with a half-time of 240 days, but the number of fibers > 5 microns in length was unchanged after 6 months. The elimination kinetics of wollastonite fibers from the lung were relatively fast, with half-times of 15 to 21 days. The coating of wollastonite in Wollastocoat had no effect on this elimination process. For the thoracic fraction of wollastonite, the elimination from the lung was as fast as for the respirable particulate fraction. The elimination kinetics of xonotlite from the lung was very fast. This material consisted of single crystals of acicular morphology with a median length of 1.3 micron and of agglomerates of these crystals. More than 99% of single crystals and about 85 to 89% of the agglomerates were already eliminated 2 days after instillation

    Investigations on health-related properties of two sepiolite samples.

    Get PDF
    Published i.p. injection studies have shown different biological behavior of different sepiolite samples. There was no evidence for carcinogenic potential of sepiolite from Vicalvaro, Spain, whereas a high tumor incidence was reported for sepiolite from Finland. The low biological activity of the sepiolite from Vicalvaro, compared to the Finnish sample, could be caused by low in vivo persistence or by the short length of the fibers, or both. In this study a further sepiolite sample, obtained as a commercial sample originating from China, was investigated. This sample contained a higher fraction of fibers longer than 5 microns, comparable to the Finnish sepiolite sample. The fraction of fibers with a length > 5 microns was 0.12 and 2.2% for the Vicalvaro and Chinese sepiolite, respectively. For the fiber fraction longer than 8 microns, the corresponding values were 0.0045 and 0.82%. The in vivo persistence of the sepiolite samples from China and Vicalvaro was analyzed after intratracheal instillation of 2 mg in female Wistar rats. Fiber retention in the lungs was analyzed by transmission electron microscopy at different sacrifice dates up to 12 months after application. For the Vicalvaro sepiolite, a splitting of fiber bundles was found during retention time in the lung. Therefore, no half-time of the fiber clearance could be calculated from the number of fibers. The decrease of the calculated retained fiber mass was faster for the Vicalvaro sepiolite (T1/2 = 89 days) compared to the Chinese sepiolite (T1/2 = 129 days). For 2 or 3 rats per group, at sacrifice date 12 months after i.p. injection, the lung was investigated by histopathology. The main difference between both treatment groups was a more pronounced fibrotic response in the Chinese sepiolite-treated rats compared to those treated with Vicalvaro sepiolite. It is concluded that both the higher fraction of long sepiolite fibers and the slower elimination rate of the fiber mass in the Chinese sample were important factors for the different biological reaction in comparison with Vicalvaro sepiolite

    Comparative investigations of the biodurability of mineral fibers in the rat lung.

    Get PDF
    The biodurability of various glass fibers, rockwool, and ceramic fibers was examined in rat lungs and compared with natural mineral fibers. Experiments were based on studies that have shown that the biodurability of fibers is one of the essential factors of the carcinogenic potency of these materials. Sized fractions of fibers were instilled intratracheally into Wistar rats. The evenness of distribution of fibers in the lung was checked by scanning electron microscopy (SEM) or careful examination of the fiber suspension before treatment. After serial sacrifices up to 24 months after treatment, the fibers were analyzed by SEM following low temperature ashing of the lungs. Parameters measured included number of fibers, diameter, and length distribution at the various sacrifice dates, so that analyses could be made of the elimination kinetics of fibers from the lung in relation to fiber length (FL). Size selective plots of the fiber elimination correlated with fiber diameters enables the mechanism of the fiber elimination (dissolution, fiber breakage, physical clearance) to be interpreted. The half-time of fiber elimination from the lung ranges from about 10 days for wollastonite to more than 300 days for crocidolite. The biodurability of man-made vitreous fibers (MMVF) is between these values and is dependent on the chemical composition of the fibers and the diameter and length distribution. Results indicate that the in vivo durability of glass fibers is considerably longer than expected from extrapolation of published data on their in vitro dissolution rates

    Cancer therapeutic potential of combinatorial immuno- and vaso-modulatory interventions

    Get PDF
    Currently, most of the basic mechanisms governing tumor-immune system interactions, in combination with modulations of tumor-associated vasculature, are far from being completely understood. Here, we propose a mathematical model of vascularized tumor growth, where the main novelty is the modeling of the interplay between functional tumor vasculature and effector cell recruitment dynamics. Parameters are calibrated on the basis of different in vivo immunocompromised Rag1-/- and wild-type (WT) BALB/c murine tumor growth experiments. The model analysis supports that tumor vasculature normalization can be a plausible and effective strategy to treat cancer when combined with appropriate immuno-stimulations. We find that improved levels of functional tumor vasculature, potentially mediated by normalization or stress alleviation strategies, can provide beneficial outcomes in terms of tumor burden reduction and growth control. Normalization of tumor blood vessels opens a therapeutic window of opportunity to augment the antitumor immune responses, as well as to reduce the intratumoral immunosuppression and induced-hypoxia due to vascular abnormalities. The potential success of normalizing tumor-associated vasculature closely depends on the effector cell recruitment dynamics and tumor sizes. Furthermore, an arbitrary increase of initial effector cell concentration does not necessarily imply a better tumor control. We evidence the existence of an optimal concentration range of effector cells for tumor shrinkage. Based on these findings, we suggest a theory-driven therapeutic proposal that optimally combines immuno- and vaso-modulatory interventions

    Irreversible pulmonary changes induced in rat lung by dust overload.

    Get PDF
    The objective of this study was to investigate whether the effects of dust overload are reversible upon cessation of subchronic exposure to test toner. Female rats were exposed 6 hr/day, 5 days/week for 3 months to a test toner at 0, 10, and 40 mg/m3. The retained quantity of test toner in the lungs at the end of exposure was 0.4 and 3.0 mg for the low and high exposure groups, respectively. Fifteen months later, the corresponding values were 0.12 and 2.65 mg in the lungs. Alveolar clearance of tracer aerosols as well as cytologic and enzymatic parameters in the bronchoalveolar fluid was investigated at the end of exposure and subsequently up to 15 months later. The alveolar clearance of 59Fe2O3, 51Cr-polystyrene, and 85Sr-polystyrene tracer aerosols was slightly retarded at the low and substantially impaired at the high exposure level. At the low exposure level, there was some recovery in the clearance behavior up to 6 months after exposure. In contrast, at the high exposure level there was no indication of a reversal of the impaired clearance. For the beta-glucuronidase activity and the number of polymorphonuclear cells, the pattern of the effects was similar to the effects on the half-time tracer particle clearance. In conclusion, the dust overload at a lung burden of 3 mg test toner in rats was persistent for at least 15 months after termination of exposure

    Investigation on the durability of man-made vitreous fibers in rat lungs.

    Get PDF
    Two types of sized stonewool with median lengths of 6.7 and 10.1 microns and median diameters of 0.63 and 0.85 microns, and crocidolite with fibers of median length of 4.8 microns and median diameter of 0.18 microns were instilled intratracheally into female Wistar rats. A single dose of 2 mg in 0.3 ml saline was used for the stonewool samples and 0.1 mg in 0.3 ml saline for crocidolite. The evenness of distribution of fibers in the lung was checked by scanning electron microscopy (SEM). Five animals per group were sacrificed after 2 days, 1, 3, 6, and 12 months. After low-temperature ashing of the lungs about 200 fibers per animal were analyzed by SEM for length and diameter. The number and mass of fibers in the total lung were calculated. For the stonewool samples the decrease in the number of fibers in the lung ash followed approximately first order kinetics resulting in half-times of 90 and 120 days. The analysis of fiber number and diameter of different length fractions was used to estimate the contribution of three processes of fiber elimination: transport by macrophages for short fibers, breakage of fibers, and dissolution of fibers. (The process of transport by macrophages was found fastest for fibers with length < 2.5 microns). For the elimination of critical fibers with length > 5 microns, the breakage and dissolution were the most important processes. The breakage of fibers was predominant for one of the stonewool samples. The preferential type of the mechanism of fiber elimination is dependent on chemical composition and size distribution

    Urinary NMR Profiling in Pediatric Acute Kidney Injury—A Pilot Study

    Get PDF
    Acute kidney injury (AKI) in critically ill children and adults is associated with significant short- and long-term morbidity and mortality. As serum creatinine- and urine output-based definitions of AKI have relevant limitations, there is a persistent need for better diagnostics of AKI. Nuclear magnetic resonance (NMR) spectroscopy allows for analysis of metabolic profiles without extensive sample manipulations. In the study reported here, we examined the diagnostic accuracy of NMR urine metabolite patterns for the diagnosis of neonatal and pediatric AKI according to the Kidney Disease: Improving Global Outcomes (KDIGO) definition. A cohort of 65 neonatal and pediatric patients (0–18 years) with established AKI of heterogeneous etiology was compared to both a group of apparently healthy children (n = 53) and a group of critically ill children without AKI (n = 31). Multivariate analysis identified a panel of four metabolites that allowed diagnosis of AKI with an area under the receiver operating characteristics curve (AUC-ROC) of 0.95 (95% confidence interval 0.86–1.00). Especially urinary citrate levels were significantly reduced whereas leucine and valine levels were elevated. Metabolomic differentiation of AKI causes appeared promising but these results need to be validated in larger studies. In conclusion, this study shows that NMR spectroscopy yields high diagnostic accuracy for AKI in pediatric patients
    • …
    corecore