23 research outputs found

    Pressure response with varying numbers of active SVs.

    No full text
    Pressure response with varying numbers of active SVs.</p

    Field testing for selective spraying application.

    No full text
    Precision agricultural techniques try to prevent either an excessive or inadequate application of agrochemicals during pesticide application. In recent years, it has become popular to combine traditional agricultural practices with artificial intelligence algorithms. This research presents a case study of variable-rate targeted spraying using deep learning for tobacco plant recognition and identification in a real tobacco field. An extensive comparison of the detection performance of six YOLO-based models for the tobacco crop has been performed based on experimentation in tobacco fields. An F1-score of 87.2% and a frame per second rate of 67 were achieved using the YOLOv5n model trained on actual field data. Additionally, a novel disturbance-based pressure and flow control method has been introduced to address the issue of unwanted pressure fluctuations that are typically associated with bang-bang control. The quality of spray achieved by attenuation of these disturbances has been evaluated both qualitatively and quantitatively using three different spraying case studies: broadcast, and selective spraying at 20 psi pressure; and variable-rate spraying at pressure varying from 15-120 psi. As compared to the broadcast spraying, the selective and variable rate spray methods have achieved up to 60% reduction of agrochemicals.</div

    Filtered pressure signal using low-pass filter.

    No full text
    Precision agricultural techniques try to prevent either an excessive or inadequate application of agrochemicals during pesticide application. In recent years, it has become popular to combine traditional agricultural practices with artificial intelligence algorithms. This research presents a case study of variable-rate targeted spraying using deep learning for tobacco plant recognition and identification in a real tobacco field. An extensive comparison of the detection performance of six YOLO-based models for the tobacco crop has been performed based on experimentation in tobacco fields. An F1-score of 87.2% and a frame per second rate of 67 were achieved using the YOLOv5n model trained on actual field data. Additionally, a novel disturbance-based pressure and flow control method has been introduced to address the issue of unwanted pressure fluctuations that are typically associated with bang-bang control. The quality of spray achieved by attenuation of these disturbances has been evaluated both qualitatively and quantitatively using three different spraying case studies: broadcast, and selective spraying at 20 psi pressure; and variable-rate spraying at pressure varying from 15-120 psi. As compared to the broadcast spraying, the selective and variable rate spray methods have achieved up to 60% reduction of agrochemicals.</div

    Detection of tobacco plant using YOLOv5n model.

    No full text
    Precision agricultural techniques try to prevent either an excessive or inadequate application of agrochemicals during pesticide application. In recent years, it has become popular to combine traditional agricultural practices with artificial intelligence algorithms. This research presents a case study of variable-rate targeted spraying using deep learning for tobacco plant recognition and identification in a real tobacco field. An extensive comparison of the detection performance of six YOLO-based models for the tobacco crop has been performed based on experimentation in tobacco fields. An F1-score of 87.2% and a frame per second rate of 67 were achieved using the YOLOv5n model trained on actual field data. Additionally, a novel disturbance-based pressure and flow control method has been introduced to address the issue of unwanted pressure fluctuations that are typically associated with bang-bang control. The quality of spray achieved by attenuation of these disturbances has been evaluated both qualitatively and quantitatively using three different spraying case studies: broadcast, and selective spraying at 20 psi pressure; and variable-rate spraying at pressure varying from 15-120 psi. As compared to the broadcast spraying, the selective and variable rate spray methods have achieved up to 60% reduction of agrochemicals.</div

    Block diagram of cascaded controller for pressure control system.

    No full text
    Block diagram of cascaded controller for pressure control system.</p

    Pressure-flow response for open solenoid-valves.

    No full text
    Precision agricultural techniques try to prevent either an excessive or inadequate application of agrochemicals during pesticide application. In recent years, it has become popular to combine traditional agricultural practices with artificial intelligence algorithms. This research presents a case study of variable-rate targeted spraying using deep learning for tobacco plant recognition and identification in a real tobacco field. An extensive comparison of the detection performance of six YOLO-based models for the tobacco crop has been performed based on experimentation in tobacco fields. An F1-score of 87.2% and a frame per second rate of 67 were achieved using the YOLOv5n model trained on actual field data. Additionally, a novel disturbance-based pressure and flow control method has been introduced to address the issue of unwanted pressure fluctuations that are typically associated with bang-bang control. The quality of spray achieved by attenuation of these disturbances has been evaluated both qualitatively and quantitatively using three different spraying case studies: broadcast, and selective spraying at 20 psi pressure; and variable-rate spraying at pressure varying from 15-120 psi. As compared to the broadcast spraying, the selective and variable rate spray methods have achieved up to 60% reduction of agrochemicals.</div

    Fig 12 -

    No full text
    (a) Spray boom pressure response based on cascaded controller. (b) Cascaded vs cascaded assisted by disturbance attenuation function.</p

    YOLO algorithms performance for tobacco crop detection.

    No full text
    YOLO algorithms performance for tobacco crop detection.</p

    Agricultural sprayer robot specifications.

    No full text
    Precision agricultural techniques try to prevent either an excessive or inadequate application of agrochemicals during pesticide application. In recent years, it has become popular to combine traditional agricultural practices with artificial intelligence algorithms. This research presents a case study of variable-rate targeted spraying using deep learning for tobacco plant recognition and identification in a real tobacco field. An extensive comparison of the detection performance of six YOLO-based models for the tobacco crop has been performed based on experimentation in tobacco fields. An F1-score of 87.2% and a frame per second rate of 67 were achieved using the YOLOv5n model trained on actual field data. Additionally, a novel disturbance-based pressure and flow control method has been introduced to address the issue of unwanted pressure fluctuations that are typically associated with bang-bang control. The quality of spray achieved by attenuation of these disturbances has been evaluated both qualitatively and quantitatively using three different spraying case studies: broadcast, and selective spraying at 20 psi pressure; and variable-rate spraying at pressure varying from 15-120 psi. As compared to the broadcast spraying, the selective and variable rate spray methods have achieved up to 60% reduction of agrochemicals.</div

    Architecture of YOLO-based object detection model.

    No full text
    Architecture of YOLO-based object detection model.</p
    corecore