20 research outputs found

    Towards estimation of CO<sub>2</sub> adsorption on highly porous MOF-based adsorbents using gaussian process regression approach

    Get PDF
    In recent years, new developments in controlling greenhouse gas emissions have been implemented to address the global climate conservation concern. Indeed, the earth's average temperature is being increased mainly due to burning fossil fuels, explicitly releasing high amounts of CO(2) into the atmosphere. Therefore, effective capture techniques are needed to reduce the concentration of CO(2). In this regard, metal organic frameworks (MOFs) have been known as the promising materials for CO(2) adsorption. Hence, study on the impact of the adsorption conditions along with the MOFs structural properties on their ability in the CO(2) adsorption will open new doors for their further application in CO(2) separation technologies as well. However, the high cost of the corresponding experimental study together with the instrument's error, render the use of computational methods quite beneficial. Therefore, the present study proposes a Gaussian process regression model with four kernel functions to estimate the CO(2) adsorption in terms of pressure, temperature, pore volume, and surface area of MOFs. In doing so, 506 CO(2) uptake values in the literature have been collected and assessed. The proposed GPR models performed very well in which the exponential kernel function, was shown as the best predictive tool with R(2) value of 1. Also, the sensitivity analysis was employed to investigate the effectiveness of input variables on the CO(2) adsorption, through which it was determined that pressure is the most determining parameter. As the main result, the accurate estimate of CO(2) adsorption by different MOFs is obtained by briefly employing the artificial intelligence concept tools

    Modeling hydrogen solubility in hydrocarbons using extreme gradient boosting and equations of state

    Get PDF
    Due to industrial development, designing and optimal operation of processes in chemical and petroleum processing plants require accurate estimation of the hydrogen solubility in various hydrocarbons. Equations of state (EOSs) are limited in accurately predicting hydrogen solubility, especially at high-pressure or/and high-temperature conditions, which may lead to energy waste and a potential safety hazard in plants. In this paper, five robust machine learning models including extreme gradient boosting (XGBoost), adaptive boosting support vector regression (AdaBoost-SVR), gradient boosting with categorical features support (CatBoost), light gradient boosting machine (LightGBM), and multi-layer perceptron (MLP) optimized by Levenberg–Marquardt (LM) algorithm were implemented for estimating the hydrogen solubility in hydrocarbons. To this end, a databank including 919 experimental data points of hydrogen solubility in 26 various hydrocarbons was gathered from 48 different systems in a broad range of operating temperatures (213–623 K) and pressures (0.1–25.5 MPa). The hydrocarbons are from six different families including alkane, alkene, cycloalkane, aromatic, polycyclic aromatic, and terpene. The carbon number of hydrocarbons is ranging from 4 to 46 corresponding to a molecular weight range of 58.12–647.2 g/mol. Molecular weight, critical pressure, and critical temperature of solvents along with pressure and temperature operating conditions were selected as input parameters to the models. The XGBoost model best fits all the experimental solubility data with a root mean square error (RMSE) of 0.0007 and an average absolute percent relative error (AAPRE) of 1.81%. Also, the proposed models for estimating the solubility of hydrogen in hydrocarbons were compared with five EOSs including Soave–Redlich–Kwong (SRK), Peng–Robinson (PR), Redlich–Kwong (RK), Zudkevitch–Joffe (ZJ), and perturbed-chain statistical associating fluid theory (PC-SAFT). The XGBoost model introduced in this study is a promising model that can be applied as an efficient estimator for hydrogen solubility in various hydrocarbons and is capable of being utilized in the chemical and petroleum industries
    corecore