6 research outputs found

    The occurrence and potential ecological risk assessment of bauxite mine-impacted water and sediments in Kuantan, Pahang, Malaysia

    Get PDF
    Recent bauxite mining activities in the vicinity of Kuantan, Pahang, have been associated with apparent environmental quality degradation and have raised environmental concerns among the public. This study was carried out to evaluate the overall ecological impacts on water and sediment quality from the bauxite mining activities. Water and sediment samples were collected at seven sampling locations within the bauxite mining areas between June and December 2015. The water samples were analyzed for water quality index (WQI) and distribution of major and trace element geochemistry. Sediment samples were evaluated based on geochemical indices, i.e., the enrichment factor (EF) and geoaccumulation index (Igeo). Potential ecological risk index was estimated to assess the degree to which sediments of the mine-impacted areas have been contaminated with heavy metals. The results showed that WQIs of some locations were classified as slightly polluted and contained metal contents exceeding the recommended guideline values. The EFs indicated minimal to moderate enrichment of metals (Pb, Cu, Zn, Mn, As, Cd, Cr, Ni, Co, and Sr) in the sediments. Igeo showed slightly to partially polluted sediments with respect to As at some locations. The potential ecological risk index (RI) showed that As posed the highest potential ecological risk with RI of 52.35–60.92 at two locations, while other locations indicated low risk. The findings from this study have demonstrated the impact of recent bauxite mining activities, which might be of importance to the local communities and relevant authorities to initiate immediate rehabilitation phase of the impacted area

    Measurement of the Hissing-Type Noise and Vibration of the Automotive HVAC System

    No full text
    Noises such as hissing, humming, air-rush and compressor engagement are the common type of noises that can be induced from the automotive heating and ventilating air conditional (HVAC) system. These noises are basically generated from the effects of vibrational HVAC components. Due to this, the root cause of the noises has to be investigated for any implementation of solution. In this study, the hissing-type of noise is taken into consideration whereby the noise and vibration are measured from various HVAC components such as Evaporator Inlet and Outlet and Thermal Expansion Valve (TXV). Three types of measurement sensors are used in this study which is tri-axial accelerometer for the vibration, tachometer for the engine rpm tracking and microphone for the noise measurement. Two types of operating conditions are taken into consideration, when engine running at 850 rpm (idle) and 850-3000 rpm (tracking) conditions and a constant blower speed is applied for both conditions. the result shows that, the hissing type of noise is determined at the frequency range of 4500-5000 Hz for the both idle and running conditions, whereby the vibration at the Evaporator Inlet is the most significant compared to the Evaporator Core and TVX components. the vibration of the Evaporator Inlet shows the drastic vibration increment between 1000-1500 rpm and getting worse towards 3000 rpm. This result is validated with the 3D colour of noise waterfall analysis, whereby the hissing noise shows the dominant result in the frequency range of 4500-5000 Hz

    Measurement of the Hissing-Type Noise and Vibration of the Automotive HVAC System

    No full text
    Noises such as hissing, humming, air-rush and compressor engagement are the common type of noises that can be induced from the automotive heating and ventilating air conditional (HVAC) system. These noises are basically generated from the effects of vibrational HVAC components. Due to this, the root cause of the noises has to be investigated for any implementation of solution. In this study, the hissing-type of noise is taken into consideration whereby the noise and vibration are measured from various HVAC components such as Evaporator Inlet and Outlet and Thermal Expansion Valve (TXV). Three types of measurement sensors are used in this study which is tri-axial accelerometer for the vibration, tachometer for the engine rpm tracking and microphone for the noise measurement. Two types of operating conditions are taken into consideration, when engine running at 850 rpm (idle) and 850-3000 rpm (tracking) conditions and a constant blower speed is applied for both conditions. the result shows that, the hissing type of noise is determined at the frequency range of 4500-5000 Hz for the both idle and running conditions, whereby the vibration at the Evaporator Inlet is the most significant compared to the Evaporator Core and TVX components. the vibration of the Evaporator Inlet shows the drastic vibration increment between 1000-1500 rpm and getting worse towards 3000 rpm. This result is validated with the 3D colour of noise waterfall analysis, whereby the hissing noise shows the dominant result in the frequency range of 4500-5000 Hz

    Ecological–health risk assessments of copper in the sediments: a review and synthesis

    No full text
    The ecological and children’s Health Risk Assessments (HRA) of Copper (Cu) in aquatic bodies ranging from rivers, mangrove, estuaries, and offshore areas were studied using the Cited Cu Data in The Sediments (CCDITS) from 125 randomly selected papers published from 1980 to 2022. The ecological and children’s HRA were assessed in all CCDITS. Generally, local point Cu sources (8%) and lithogenic sources were the main controlling factors of Cu concentrations. The present review revealed three interesting points. First, there were 11 papers (8%) documenting Cu levels of more than 500 mg/kg dw while China was the country with the highest number (26%) of papers published between 1980 and 2022, out of 37 countries. Second, with the Cu data cited from the literature not normally distributed, the maximum Cu level was higher than all the established guidelines. However, the median Cu concentration was lower than most of the established guidelines. The median values of the geoaccumulation index (Igeo) indicated a status of ‘unpolluted‘ and ‘moderate contamination’ for the contamination factor (CF), and ‘low potential ecological risk’ for the ecological risk (ER) of Cu. However, the Cu ER could be based at present on the above mentioned 8% of the literature in the present study. Third, the calculated hazard index (HI) values were found to be below 1, indicating no potential chance of Cu non–carcinogenic effects in both adults and children, except for children’s HI values from Lake Pamvotis of Greece, and Victoria Harbor in Hong Kong. Thus, regular monitoring (every 2 years), depending upon the available resources, is recommended to assess the ecological–health risk of Cu pollution in aquatic bodies to abate the risk of Cu exposure to children’s health and avoid injurious impacts on the biota. It can be concluded that there is always a need for the mitigation and management of a Cu exposure risk assessment that can be used successfully for screening purposes to detect important human health exposure routes. Consequently, any sediments contaminated with Cu require rapid sediment remediation techniques

    Ecological–health risk of antimony and arsenic in Centella asiatica, topsoils, and mangrove sediments: a case study of Peninsular Malaysia

    No full text
    The current study assessed the ecological–health risks of potentially toxic arsenic (As) and antimony (Sb) in the vegetable Centella asiatica, topsoils, and mangrove sediments sampled from Peninsular Malaysia. The As concentrations ranged from 0.21 to 4.33, 0.18 to 1.83, and 1.32 to 20.8 mg/kg dry weight, for the leaves, stems, and roots of the vegetable, respectively. The ranges of Sb concentrations were 0.31–0.62, 0.12–0.35, and 0.64–1.61 mg/kg dry weight, for leaves, stems, and roots of the vegetable, respectively. The children’s target hazard quotient (THQ) values indicated no non-carcinogenic risks of As and Sb in both leaves and stems, although children’s THQ values were higher than those in adults. The calculated values of estimated weekly intake were lower than established provisional tolerable weekly intake of As and Sb for both children and adult consumers. The carcinogenic risk (CR) values of As for children’s intake of leaves and stems of vegetables showed more public concern than those of adults. The levels of Sb and As in the topsoils were generally higher (although not significantly) than those in the mangrove sediments, resulting in a higher geoaccumulation index, contamination factor and ecological risk, hazard index, THQ, and CR values. This indicated that the anthropogenic sources of Sb and As originated from the land-based activities before reaching the mangrove near the coast. The CR of As signifies a dire need for comprehensive ecological–health risks exposure studies, as dietary intake involves more than just vegetable consumption. Therefore, risk management for As and Sb in Malaysia is highly recommended. The present findings of the ecological–health risks of As and Sb based on 2010–2012 samples can be used as an important baseline for future reference and comparison
    corecore