106 research outputs found

    Effect of Acid Concentration on the Properties of Microcrystalline Cellulose from Pineapple Crown Leaf

    Get PDF
    Microcrystalline cellulose was first extracted from pineapple crown leaf waste which is used very rarely as an alternative material from agricultural residue and then characterized. Microcrystalline cellulose was extracted from this waste through acid hydrolysis with various concentrations. The effect of acidconcentrations with sulfuric acid (H2SO4) on microcrystalline cellulose properties was investigated to determine its potential application as a material. Pineapple crown leaf was hydrolyzed for 2 hours at 45℃ along with various sulfuric acid concentrations (1, 2, and 3 M). The properties of the cellulose were evaluated by Scanning electron microscopy (SEM), Fourier transforms infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Among all the hydrolysis conditions carried out, the best hydrolysis condition was 3 M sulfuric acid. At this hydrolysis condition, the microcrystalline cellulose presented a rod-like shape, high crystallinity at 83.16%, and have average crystal size of 17.99 nm. The functional group and morphology analysis showed that the resulted product is maintained cellulose I structure and removal of non-cellulosic constituents and the chemical compositions. As for the thermal analysis, the temperature decreased from 177℃ (2 M sulfuric acid) to 149℃ (3 M sulfuric acid) because of the incorporation of sulfate groups after the hydrolysis process. Therefore, microcrystalline cellulose obtained from pineapple crown leaf waste has great potential as reinforcement in the manufacture of composites.

    Optical properties and conductivity of pva–h3 po4 (Polyvinyl alcohol–phosphoric acid) film blend irradiated by γ-rays

    Get PDF
    This study assesses the optical properties and conductivity of PVA–H3PO4 (polyvinyl alcohol–phosphoric acid) polymer film blend irradiated by gamma (γ) rays. The PVA–H3PO4 polymer film blend was prepared by the solvent-casting method at H3PO4 concentrations of 75 v% and 85 v%, and then irradiated up to 25 kGy using γ-rays from the Cobalt-60 isotope source. The optical absorption spectrum was measured using an ultraviolet–visible spectrophotometer over a wavelength range of 200 to 700 nm. It was found that the absorption peaks are in three regions, namely two peaks in the ultraviolet region (310 and 350 nm) and one peak in the visible region (550 nm). The presence of an absorption peak after being exposed to hυ energy indicates a transition of electrons from HOMO to LUMO within the polymer chain. The study of optical absorption shows that the energy band gap (energy gap) depends on the radiation dose and the concentration of H3PO4 in the polymer film blend. The optical absorption, absorption edge, and energy gap decrease with increasing H3PO4 concentration and radiation dose. The interaction between PVA and H3PO4 blend led to an increase in the conductivity of the resulting polymer blend film

    Mechanical impact in disk mill for producing controlled rice husk particle size by changing impactor shapes and disk rotation speeds

    Get PDF
    The purpose of this study was to evaluate regulation of mechanical impact (i.e. impactor sizes and shapes) on triangle, cylinder, and cube as well as disk rotation speed (from 600 to 1500 rpm) in disk mill for controlling size-reduction process. As a model of size-reduced material, rice husk was selected. The study was done by evaluating the final milling product size, which was completed by the measurement of energy impact during the milling process. Experimental results showed that the product size was controllable in the range of between 50 and 1000 μm. The impactor sizes and shapes influenced the contact diameter and area of impactor for making more materials being collided, whereas disk rotation speed led to giving more collision number (between rice husk and impactor) and increasing impact from the collision (due to less time contact during collision). This study provides an important information, which can be further generalized in the use of milling process as a tool for materials size-reduction and mechanochemical process

    The Sustainability and Development Strategy of a Cattle Feed Bank: A Case Study

    Get PDF
    One of the Indonesian government’s policies to achieve national beef self-sufficiency is the 1000 beef village program. The program was piloted in many cattle-farming centers involving the operation of a feed bank to supply animal feed to tackle the challenge of feed limitation during the dry season. This study evaluates the sustainability status of an ongoing feed bank program and its development strategy based on the current progress of a feed bank used to serve five groups of farmers. Ninety sustainability attributes were derived based on six dimensions. The attributes were compiled from the primary data collected using a questionnaire. Expert opinions from practitioners were also considered in evaluating the attributes. The feed bank’s sustainability status and development strategy were determined using the multi-dimensional scaling method with the rapid appraisal approach. It was found that the overall sustainability status of the feed bank was less sustainable, with an overall score of 49.55. The individual dimensions of (A) policy and government support, (B) raw material, (C) facilities and infrastructure, (D) feed bank management, (D) human resource management, (E) price, production, and (F) distribution systems posed sustainability scores of 48.48, 60.33, 48.57, 47.89, 48.76, and 44.64, respectively. Among the 90 predefined attributes, 21 were identified as highly sensitive through both the root mean square and expert opinion. Those attributes led to five main recommended development strategies: (1) strengthening the institution, (2) intensifying training, (3) increasing human resources (4) partnership developments, and (5) increasing the role of multi-stakeholders

    Properties of Bio composite Film Based on Whey Protein Isolate Filled with Nanocrystalline Cellulose from Pineapple Crown Leaf

    Get PDF
    Among the main bio-based polymer for food packaging materials, whey protein isolate (WPI) is one of the biopolymers that have excellent film-forming properties and are environmentally friendly. This study was performed to analyse the effect of various concentrations of bio-based nanocrystalline cellulose (NCC) extracted from pineapple crown leaf (PCL) on the properties of whey protein isolate (WPI) films using the solution casting technique. Six WPI films were fabricated with different loadings of NCC from 0 to 10 % w/v. The resulting films were characterised based on their mechanical, physical, chemical, and thermal properties. The results show that NCC loadings increased the thickness of the resulting films. The transparency of the films decreased at higher NCC loadings. The moisture content and moisture absorption of the films decreased with the presence of the NCC, being lower at higher NCC loadings. The water solubility of the films decreased from 92.2% for the pure WPI to 65.5% for the one containing 10 % w/v of NCC. The tensile strength of the films peaked at 7% NCC loading with the value of 5.1 MPa. Conversely, the trend of the elongation at break data was the opposite of the tensile strength. Moreover, the addition of NCC produced a slight effect of NCC in FTIR spectra of the WPI films using principal component analysis. NCC loading enhanced the thermal stability of the WPI films, as shown by an increase in the glass transition temperature at higher NCC loadings. Moreover, the morphology of the films turned rougher and more heterogeneous with small particle aggregates in the presence of the NCC. Overall, the addition of NCC enhanced the water barrier and mechanical properties of the WPI films by incorporating the PCL-based NCC as the filler

    Anaerobic membrane bioreactors for biohydrogen production: recent developments, challenges and perspectives

    Get PDF
    Biohydrogen as one of the most appealing energy vector for the future represents attractive avenue in alternative energy research. Recently, variety of biohydrogen production pathways has been suggested to improve the key features of the process. Nevertheless, researches are still needed to overcome remaining barriers to practical applications such as low yields and production rates. Considering practicality aspects, this review emphasized on anaerobic membrane bioreactors (AnMBRs) for biological hydrogen production. Recent advances and emerging issues associated with biohydrogen generation in AnMBR technology are critically discussed. Several techniques are highlighted that are aimed at overcoming these barriers. Moreover, environmental and economical potentials along with future research perspectives are addressed to drive biohydrogen technology towards practicality and economical-feasibility

    Improvement of Properties and Performances of Polyether sulfone Ultrafiltration Membrane by Blending with Bio-Based Dragonbloodin Resin

    Get PDF
    Polyethersulfone (PES) is the most commonly used polymer for membrane ultrafiltration because of its superior properties. However, it is hydrophobic, as such susceptible to fouling and low permeation rate. This study proposes a novel bio-based additive of dragonbloodin resin (DBR) for improving the properties and performance of PES-based membranes. Four flat sheet membranes were prepared by varying the concentration of DBR (0–3%) in the dope solutions using the phase inversion method. After fabrication, the membranes were thoroughly characterized and were tested for filtration of humic acid solution to investigate the effect of DBR loading. Results showed that the hydrophilicity, porosity, and water uptake increased along with the DBR loadings. The presence of DBR in the dope solution fastened the phase inversion, leading to a more porous microstructure, resulted in membranes with higher number and larger pore sizes. Those properties led to more superior hydraulic performances. The PES membranes loaded with DBR reached a clean water flux of 246.79 L/(m2 ·h), 25-folds higher than the pristine PES membrane at a loading of 3%. The flux of humic acid solution reached 154.5 ± 6.6 L/(m2 ·h), 30-folds higher than the pristine PES membrane with a slight decrease in rejection (71% vs. 60%). Moreover, DBR loaded membranes (2% and 3%) showed an almost complete flux recovery ratio over five cleaning cycles, demonstrating their excellent antifouling property. The hydraulic performance could possibly be enhanced by leaching the entrapped DBR to create more voids and pores for water permeation

    Optimization of Biocomposite Film Based on Whey Protein Isolate and Nanocrystalline Cellulose from Pineapple Crown Leaf Using Response Surface Methodology

    Get PDF
    This study employed response surface methodology to optimize the preparation of biocomposites based on whey protein isolate, glycerol, and nanocrystalline cellulose from pineapple crown leaf. The effects of different concentrations of nanocrystalline cellulose as a filler and glycerol as a plasticizer on the thickness, the tensile strength, and the elongation at break on the resulting biocomposite films were investigated. The central composite design was used to determine the optimum preparation conditions for biocomposite films with optimum properties. The regression of a second-order polynomial model resulted in an optimum composition consisting of 4% glycerol and 3.5% nanocrystalline cellulose concentrations, which showed a desirability of 92.7%. The prediction of the regression model was validated by characterizing the biocomposite film prepared based on the optimum composition, at which the thickness, tensile strength, and elongation at break of the biocomposite film were 0.13 mm, 7.16 MPa, and 39.10%, respectively. This optimum composition can be obtained in range concentrations of glycerol (4–8%) and nanocrystalline cellulose (3–7%). Scanning electron microscope images showed that nanocrystalline cellulose dispersed well in the pure whey protein isolate, and the films had a relatively smooth surface. In comparison, a rough and uneven surface results in more porous biocomposite films. Fourier transform infrared spectroscopy revealed that nanocrystalline cellulose and glycerol showed good compatibility with WPI film by forming hydrogen bonds. The addition of nanocrystalline cellulose as a filler also decreased the transparency, solubility, and water vapor permeability and increased the crystallinity index of the resulting biocomposite film

    A review on recent progress in membrane distillation crystallization

    Get PDF
    Membrane distillation crystallization (MDC) is a promising hybrid separation technology that can play an important role in desalination, mineral recovery from liquid solution as well as in carbon dioxide fixation. MDC combines membrane distillation and crystallizer into one integrated unit that allows excellent recovery of clean water and high purity salt from highly concentrated salts solution (i.e., brine), which is otherwise detrimental when discharged to the environment. The process intensification addresses the limitation of standalone membrane distillation and a standalone crystallizer (i.e., temperature and concentration polarization, membrane properties) when operated as individual technology. This review discusses the fundamental of MDC focused on how the process intensification addresses those standalone units' limitations. Later, MDC's potential applications in addressing some pressing issues such as water scarcity and climate change are also evaluated. Lastly, current trends in the MDC research are discussed to project the required future developments.Postprint (updated version

    Isolation and characterization of nanocrystalline cellulose isolated from pineapple crown leaf fiber agricultural wastes using acid hydrolysis

    Get PDF
    Pineapple crown leaf fiber (PCLF) is one of the major biomass wastes from pineapple processing plants. It consists mostly of carbohydrate polymers, such as cellulose, hemicellulose, and lignin. It can be further processed to form a more valuable and widely used nanocrystalline cellulose (NCC). This study investigates the effect of hydrolysis time on the properties of the produced NCC. The acid hydrolysis was conducted using 1 M of sulfuric acid at hydrolysis times of 1–3 h. The resulting NCCs were then characterized by their morphology, functional groups, crystallinity, thermal stability, elemental composition, and production yield. The results show that the NCC products had a rod-like particle structure and possessed a strong cellulose crystalline structure typically found in agricultural fiber-based cellulose. The highest NCC yield was obtained at 79.37% for one hour of hydrolysis. This NCC also displayed a higher decomposition temperature of 176.9 C. The overall findings suggest that PCLF-derived NCC has attractive properties for a variety of applications
    corecore