12 research outputs found

    AP-1-Targeting Anti-Inflammatory Activity of the Methanolic Extract of Persicaria chinensis

    Get PDF
    In traditional Chinese medicine, Persicaria chinensis L. has been prescribed to cure numerous inflammatory disorders. We previously analyzed the bioactivity of the methanol extract of this plant (Pc-ME) against LPS-induced NO and PGE2 in RAW264.7 macrophages and found that it prevented HCl/EtOH-induced gastric ulcers in mice. The purpose of the current study was to explore the molecular mechanism by which Pc-ME inhibits activator protein- (AP-) 1 activation pathway and mediates its hepatoprotective activity. To investigate the putative therapeutic properties of Pc-ME against AP-1-mediated inflammation and hepatotoxicity, lipopolysaccharide- (LPS-) stimulated RAW264.7 and U937 cells, a monocyte-like human cell line, and an LPS/D-galactosamine- (D-GalN-) induced acute hepatitis mouse model were employed. The expression of LPS-induced proinflammatory cytokines including interleukin- (IL-) 1β, IL-6, and tumor necrosis factor-α (TNF-α) was significantly diminished by Pc-ME. Moreover, Pc-ME reduced AP-1 activation and mitogen-activated protein kinase (MAPK) phosphorylation in both LPS-stimulated RAW264.7 cells and differentiated U937 cells. Additionally, we highlighted the hepatoprotective and curative effects of Pc-ME pretreated orally in a mouse model of LPS/D-GalN-intoxicated acute liver injury by demonstrating the significant reduction in elevated serum AST and ALT levels and histological damage. Therefore, these results strongly suggest that Pc-ME could function as an antihepatitis remedy suppressing MAPK/AP-1-mediated inflammatory events

    Antrodia camphorata Mycelia Exert Anti-liver Cancer Effects and Inhibit STAT3 Signaling in vitro and in vivo

    Get PDF
    Hepatocellular carcinoma (HCC), the major form of primary liver cancer, is a common cause of cancer-related death worldwide. Signal transducer and activator of transcription 3 (STAT3) signaling is constantly activated in HCC and has been proposed as a chemotherapeutic target for HCC. Antrodia camphorata (AC), a medicinal mushroom unique to Taiwan, is traditionally used for treating HCC. Whereas natural AC is scarce, cultured AC mycelia are becoming alternatives. In this study, we investigated the anti-HCC effects of the ethyl acetate fraction of an ethanolic extract of AC mycelia (EEAC), particularly exploring the involvement of STAT3 signaling in these effects. We found that EEAC reduced cell viability, induced apoptosis, and retarded migration and invasion in cultured HepG2 and SMMC-7721 cells. Immunoblotting results showed that EEAC downregulated protein levels of phosphorylated and total STAT3 and JAK2 (an upstream kinase of STAT3) in HCC cells. Real-time PCR analyses showed that STAT3, but not JAK2, mRNA levels were decreased by EEAC. EEAC also lowered the protein level of nuclear STAT3, decreased the transcriptional activity of STAT3, and downregulated protein levels of STAT3-targeted molecules, including anti-apoptotic proteins Bcl-xL and Bcl-2, and invasion-related proteins MMP-2 and MMP-9. Over-activation of STAT3 in HCC cells diminished the cytotoxic effects of EEAC. In SMMC-7721 cell-bearing mice, EEAC (100 mg/kg, i.g. for 18 days) significantly inhibited tumor growth. Consistent with our in vitro data, EEAC induced apoptosis and suppressed JAK2/STAT3 activation/phosphorylation in the tumors. Taken together, EEAC exerts anti-HCC effects both in vitro and in vivo; and inhibition of STAT3 signaling is, at least in part, responsible for these effects. We did not observe significant toxicity of EEAC in normal human liver-derived cells, nude mice and rats. Our results provide a pharmacological basis for developing EEAC as a safe and effective agent for HCC management

    Dendritic Cells (DCs)-Based Cancer Immunotherapy: A Review on the Prospects of Medicinal Plants and Their Phytochemicals as Potential Pharmacological Modulators

    No full text
    Dendritic cells (DCs) are specialized antigen-presenting cells in humans and animals that provide antigen-specific T-cell immunity in the body. It also establishes a linkage between innate and adaptive immune responses. Various studies have shown that malignancies or cancer may impair DCs and effector T-cell functions. DCs have now become a new molecular target for the treatment of cancer. Modified matured DCs could be novel biological modifiers to treat various diseases, including cancer. This review aims to provide an update on the impacts of various plant materials and their phytochemicals on DC-based cancer immunotherapy. Existing literature on DC-based cancer immunotherapy and plant-based pharmacological modulators has been explored over the last decade using various online databases such as Google Scholar, PubMed, Science Direct, and Scopus. Mounting evidence from preclinical and clinical findings suggests that various plants and their bioactive phytochemicals are effective in modulating the immune system and signaling pathways involved in anti-tumor immunity. Despite the prospective role of herbs in DC-based cancer immunotherapy, most of the studies are limited by either preclinical models or crude plant extracts. This review provides a useful perspective for developing potential plant-derived pharmacological modulators in DC-based cancer immunotherapy

    In vitro antioxidative and anti-inflammatory effects of the compound K-rich fraction BIOGF1K, prepared from Panax ginseng

    Get PDF
    Background: BIOGF1K, a compound K-rich fraction prepared from the root of Panax ginseng, is widely used for cosmetic purposes in Korea. We investigated the functional mechanisms of the anti-inflammatory and antioxidative activities of BIOGF1K by discovering target enzymes through various molecular studies. Methods: We explored the inhibitory mechanisms of BIOGF1K using lipopolysaccharide-mediated inflammatory responses, reporter gene assays involving overexpression of toll-like receptor adaptor molecules, and immunoblotting analysis. We used the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay to measure the antioxidative activity. We cotransfected adaptor molecules, including the myeloid differentiation primary response gene 88 (MyD88) and Toll/interleukin-receptor domain containing adaptor molecule-inducing interferon-β (TRIF), to measure the activation of nuclear factor (NF)-κB and interferon regulatory factor 3 (IRF3). Results: BIOGF1K suppressed lipopolysaccharide-triggered NO release in macrophages as well as DPPH-induced electron-donating activity. It also blocked lipopolysaccharide-induced mRNA levels of interferon-β and inducible nitric oxide synthase. Moreover, BIOGF1K diminished the translocation and activation of IRF3 and NF-κB (p50 and p65). This extract inhibited the upregulation of NF-κB-linked luciferase activity provoked by phorbal-12-myristate-13 acetate as well as MyD88, TRIF, and inhibitor of κB (IκBα) kinase (IKKβ), and IRF3-mediated luciferase activity induced by TRIF and TANK-binding kinase 1 (TBK1). Finally, BIOGF1K downregulated the NF-κB pathway by blocking IKKβ and the IRF3 pathway by inhibiting TBK1, according to reporter gene assays, immunoblotting analysis, and an AKT/IKKβ/TBK1 overexpression strategy. Conclusion: Overall, our data suggest that the suppression of IKKβ and TBK1, which mediate transcriptional regulation of NF-κB and IRF3, respectively, may contribute to the broad-spectrum inhibitory activity of BIOGF1K

    The Dietary Flavonoid Kaempferol Mediates Anti-Inflammatory Responses via the Src, Syk, IRAK1, and IRAK4 Molecular Targets

    No full text
    Even though a lot of reports have suggested the anti-inflammatory activity of kaempferol (KF) in macrophages, little is known about its exact anti-inflammatory mode of action and its immunopharmacological target molecules. In this study, we explored anti-inflammatory activity of KF in LPS-treated macrophages. In particular, molecular targets for KF action were identified by using biochemical and molecular biological analyses. KF suppressed the release of nitric oxide (NO) and prostaglandin E2 (PGE2), downregulated the cellular adhesion of U937 cells to fibronectin (FN), neutralized the generation of radicals, and diminished mRNA expression levels of inflammatory genes encoding inducible NO synthase (iNOS), TNF-α, and cyclooxygenase- (COX-) 2 in lipopolysaccharide- (LPS-) and sodium nitroprusside- (SNP-) treated RAW264.7 cells and peritoneal macrophages. KF reduced NF-κB (p65 and p50) and AP-1 (c-Jun and c-Fos) levels in the nucleus and their transcriptional activity. Interestingly, it was found that Src, Syk, IRAK1, and IRAK4 responsible for NF-κB and AP-1 activation were identified as the direct molecular targets of KF by kinase enzyme assays and by measuring their phosphorylation patterns. KF was revealed to have in vitro and in vivo anti-inflammatory activity by the direct suppression of Src, Syk, IRAK1, and IRAK4, involved in the activation of NF-κB and AP-1

    NF-κB/AP-1-Targeted Inhibition of Macrophage-Mediated Inflammatory Responses by Depigmenting Compound AP736 Derived from Natural 1,3-Diphenylpropane Skeleton

    No full text
    AP736 was identified as an antimelanogenic drug that can be used for the prevention of melasma, freckles, and dark spots in skin by acting as a suppressor of melanin synthesis and tyrosinase expression. Since macrophage-mediated inflammatory responses are critical for skin health, here we investigated the potential anti-inflammatory activity of AP736. The effects of AP736 on various inflammatory events such as nitric oxide (NO)/prostaglandin (PG) E2 production, inflammatory gene expression, phagocytic uptake, and morphological changes were examined in RAW264.7 cells. AP736 was found to strongly inhibit the production of both NO and PGE2 in lipopolysaccharide- (LPS-) treated RAW264.7 cells. In addition, AP736 strongly inhibited both LPS-induced morphological changes and FITC-dextran-induced phagocytic uptake. Furthermore, AP736 also downregulated the expression of multiple inflammatory genes, such as inducible NO synthase (iNOS), cyclooxygenase- (COX-) 2, and interleukin- (IL-) 1β in LPS-treated RAW264.7 cells. Transcription factor analysis, including upstream signalling events, revealed that both NF-κB and AP-1 were targeted by AP736 via inhibition of the IKK/IκBα and IRAK1/TAK1 pathways. Therefore, our results strongly suggest that AP736 is a potential anti-inflammatory drug due to its suppression of NF-κB-IKK/IκBα and AP-1-IRAK1/TAK1 signalling, which may make AP736 useful for the treatment of macrophage-mediated skin inflammation
    corecore