4 research outputs found

    Hydrothermal Liquefaction of Lignocellulosic and Protein-Containing Biomass: A Comprehensive Review

    No full text
    Hydrothermal liquefaction (HTL) is a thermochemical depolymerization technology, also known as hydrous pyrolysis, that transforms wet biomass into biocrude and valuable chemicals at a moderate temperature (usually 200–400 °C) and high pressure (typically 10–25 MPa). In HTL, water acts as a key reactant in HTL activities. Several properties of water are substantially altered as the reaction state gets closer to the critical point of water, which can result in quick, uniform, and effective reactions. The current review covers the HTL of various feedstocks, especially lignocellulosic and high protein-containing feeds with their in-depth information of the chemical reaction mechanisms involved in the HTL. Further, this review gives insight and knowledge about the influencing factors such as biomass pretreatment, process mode, process conditions, etc., which could affect the efficiency of the hydrothermal process and biocrude productivity. In addition, the latest trends, and emerging challenges to HTL are discussed with suitable recommendations

    Biochemical treatment of poultry manure and buffalo dung to enhance methane generation using lab-scale an-aerobic digester: effect of mesophillic condition on methane generation

    Get PDF
    Poultry industry is one of the important growing poultry Industry of Pakistan, the pollution produced due to this causing serious environmental threats such as aquatic life disturbance, air, water and land pollution, pathogen contamination, bad odor, soil contamination and ammonia evaporation. This research study deals with utilization of poultry manure (PM) and buffalo dung (BD) for methane generation and enhance the generation through optimization of substrate mixing ratio and observe the effect of mesophillic condition on methane generation. The PM and BD were biochemically treated by anaerobic digestion. The mixing of P.M and B.D were carried out in ratio 3/1, 1/3 and 1/1 in 500 ml glass bottles acting as bio-reactor. The PM and BD alone were also used in different bioreactor. All the digesters have retention time of 65 days and operated at temperature of 37oC. Each digester distilled water and substrates were used in 1:1 ratio. All the digesters were operated by batch wise process. The generation of biogas from experimental work was maximum from 1:3 of P.M and B.D yield 561 Nml/gm.vs. The methane generation was also maximum in digester containing one part of P.M and three part of buffalo dung the methane generation was also maximum 66 %containing 32 % carbon dioxide. From this study we conclude that biochemical treatment of substrates mixed together in different ratios produces large quantity, quality, higher biodegradability and effective volatile solid removal from substrate

    Mn3O4@ZnO Hybrid Material: An Excellent Photocatalyst for the Degradation of Synthetic Dyes including Methylene Blue, Methyl Orange and Malachite Green

    Get PDF
    In this study, we synthesized hybrid systems based on manganese oxide@zinc oxide (Mn3O4@ZnO), using sol gel and hydrothermal methods. The hybrid materials exhibited hierarchical morphologies and structures characterized by the hexagonal phase of ZnO and the tetragonal phase of Mn3O4. The hybrid materials were tested for degradation of methylene blue (MB), methyl orange (MO), and malachite green (MG) under ultraviolet (UV) light illumination. The aim of this work was to observe the effect of various amounts of Mn3O4 in enhancing the photocatalytic properties of ZnO-based hybrid structures towards the degradation of MB, MO and MG. The ZnO photocatalyst showed better performance with an increasing amount of Mn3O4, and the degradation efficiency for the hybrid material containing the maximum amount of Mn3O4 was found to be 94.59%, 89.99%, and 97.40% for MB, MO and MG, respectively. The improvement in the performance of hybrid materials can be attributed to the high charge separation rate of electron-hole pairs, the co-catalytic role, the large number of catalytic sites, and the synergy for the production of high quantities of oxidizing radicals. The performance obtained from the various Mn3O4@ZnO hybrid materials suggest that Mn3O4 can be considered an effective co-catalyst for a wide range of photocatalytic materials such as titanium dioxide, tin oxide, and carbon-based materials, in developing practical hybrid photocatalysts for the degradation of dyes and for wastewater treatment

    Design of γ-Alumina-Supported Phosphotungstic Acid-Palladium Bifunctional Catalyst for Catalytic Liquid-Phase Citral Hydrogenation

    No full text
    This study primarily addresses the development of dynamic, selective and economical metal–acid (bifunctional) catalysts for one-pot menthol production by citral hydrogenation. Specifically, various metals such as Pd, Pt, Ni, Cs and Sn were doped over alumina support. Additionally, bifunctional composite catalysts were also prepared with the impregnation of heteropoly acids and Pd precursors over alumina support. Analytical techniques (e.g., BET, PXRD, FT-IR, pyridine adsorption and amine titration methods) were applied for characterization of the most efficient and selective catalysts (e.g., Al2O3 and PTA-Cat-I). Similarly, most of the essential operational variables (e.g., loading rate of metal precursor, type of heteropoly acid, temperature, gas pressure and reaction time) were examined during this study. The experimental data shows that the bifunctional catalyst (PTA-Cat-I) produced 45% menthol at full citral substrate conversion (r = 0.038 mmoles.min−1) in liquid-phase citral hydrogenation (at optimized operating conditions: 70 °C, 0.5 MPa and 8 h). However, the heteropoly acid-supported bifunctional catalysts (e.g., PTA-Cat-I, PMA-Cat-I, SMA-Cat-I and STA-Cat-I) resulted in cracking and the dehydration of isopulegol/menthol by the generation of side products (e.g., 4-isopropyl-1-methyl, cyclohex-1-ane/ene); therefore, menthol yield was extensively diminished. On the other hand, non-acidic catalysts (e.g., Cat-I, Cat-II, Cat-III, Cat-IV and Cat-V) readily promoted hydrogenation reactions. The optimum menthol yield occurred due to the presence of strong Lewis and weak Bronsted acid sites. Mass transfer and reaction rate were substantially diminished due to acidity strength, heteropoly acid type and blockage of pores by the applied bifunctional catalysts
    corecore