54 research outputs found

    An investigation of mechanical properties of fly ash based geopolymer and glass fibers concrete

    Get PDF
    This paper presents an innovative approach towards the development of a green concrete. The geopolymer is an environmentally friendly construction/repairing material. In addition, glass fibers are helpful to influence the strength properties and to reduce hair line cracks and bleeding in concrete. This study is based on the use of fly ash and glass fibers as a partial replacement of cement and, subsequently, its effect on compressive strength and split tensile strength of concrete. The geopolymer is manufactured after the process of geopolymerization between class F fly ash and alkali activator fluid (sodium silicate and sodium hydroxide). In geopolymer concretes (GPC), an inorganic polymer called aluminosilicate will act as a binder, the same as conventional concrete has Portland cement (OPC)-generated C-S-H gel. The glass fibers are added in the ratios of 3%, 6%, and 10% by weight of cement. To check the effect of geopolymer and glass fibers on compressive strength and split tensile strength of concrete, concrete cubes of size 150 × 150 × 150 mm and concrete cylinders of size 150 × 300 mm with or without geopolymer and glass fibers were casted and cured for 7, 14, 21, and 28 days. The compressive strength and split tensile strength of all concrete cubes and cylinders were determined by compression testing machine. The findings of the research study revealed that concrete having geopolymer and glass fibers used as a partial replacement of cement showed lesser strength as compared to conventional concrete. Concrete having glass fibers showed reduced workability and more segregation as compared to geopolymer concrete and normal concrete. However, the concrete made either with geopolymer or glass fibers is economical as compared to conventional concrete

    A Survey of Fourth Generation Technologies in Cellular Networks

    Get PDF
    The improvement of broadband remote get to advances as of late was the consequence of developing interest for versatile Internet and remote interactive media applications. Portable correspondence assumes a most vital part in broadcast communications industry. Through a typical wide-territory radio-get to innovation and adaptable system design WiMAX and LTE has empowered meeting of versatile and settled broadband systems. SinceJanuary 2007, the IEEE 802.16 Working Group has been building up another alteration of the IEEE802.16 standard (i.e., IEEE 802.16m) as a propelled air interface to meet the prerequisites of ITU-R/IMT-progressed for 4G frameworks and in addition for the cutting edge portable system administrators. Next fourth era (4G) portable innovation, guarantees the full versatility with fast information rates and high-limit IP-based administrations and applications while keeping up full in reverse similarity. This paper gives the purposes behind the advancement of 4G, however 3G has not sent totally. And afterward gives the data on the structure of the handset for 4G took after by the tweak systems required for the 4G.Later this gives the information about the 4G handling. At long last closes with cutting edge sees for the speedy rise of this rising innovation

    A Study of Ticks and Tick-Borne Livestock Pathogens in Pakistan

    Get PDF
    Background As obligate blood-feeding arthropods, ticks transmit pathogens to humans and domestic animals more often than other arthropod vectors. Livestock farming plays a vital role in the rural economy of Pakistan, and tick infestation causes serious problems with it. However, research on tick species diversity and tick-borne pathogens has rarely been conducted in Pakistan. In this study, a systematic investigation of the tick species infesting livestock in different ecological regions of Pakistan was conducted to determine the microbiome and pathobiome diversity in the indigenous ticks. Methodology/Principal findings A total of 3,866 tick specimens were morphologically identified as 19 different tick species representing three important hard ticks, Rhipicephalus, Haemaphysalis and Hyalomma, and two soft ticks, Ornithodorus and Argas. The bacterial diversity across these tick species was assessed by bacterial 16S rRNA gene sequencing using a 454-sequencing platform on 10 of the different tick species infesting livestock. The notable genera detected include Ralstonia, Clostridium, Staphylococcus, Rickettsia, Lactococcus, Lactobacillus, Corynebacterium, Enterobacter, and Enterococcus. A survey of Spotted fever group rickettsia from 514 samples from the 13 different tick species generated rickettsial-specific amplicons in 10% (54) of total ticks tested. Only three tick species Rhipicephalus microplus, Hyalomma anatolicum, and H. dromedarii had evidence of infection with “Candidatus Rickettsia amblyommii” a result further verified using a rompB gene-specific quantitative PCR (qPCR) assay. The Hyalomma ticks also tested positive for the piroplasm, Theileria annulata, using a qPCR assay. Conclusions/Significance This study provides information about tick diversity in Pakistan, and pathogenic bacteria in different tick species. Our results showed evidence for Candidatus R. amblyommii infection in Rhipicephalus microplus, H. anatolicum, and H. dromedarii ticks, which also carried T. annulata

    Spectroscopic Analysis of Au-Cu Alloy Nanoparticles of Various Compositions Synthesized by a Chemical Reduction Method

    Get PDF
    Au-Cu alloy nanoparticles were synthesized by a chemical reduction method. Five samples having different compositions of Au and Cu (Au-Cu 3 : 1, Au-Cu 2 : 1, Au-Cu 1 : 1, Au-Cu 1 : 2, and Au-Cu 1 : 3) were prepared. The newly synthesized nanoparticles were characterized by electronic absorption, fluorescence, and X-ray diffraction spectroscopy (XRD). These alloy nanoparticles were also analyzed by SEM and TEM. The particle size was determined by SEM and TEM and calculated by Debye Scherrer’s equation as well. The results revealed that the average diameter of nanoparticles gets lowered from 80 to 65 nm as the amount of Cu is increased in alloy nanoparticles. Some physical properties were found to change with change in molar composition of Au and Cu. Most of the properties showed optimum values for Au-Cu alloy nanoparticles of 1 : 3. Cu in Au-Cu alloy caused decrease in the intensity of the emission peak and acted as a quencher. The fluorescence data was utilized for the evaluation of number of binding sites, total number of atoms in alloy nanoparticle, binding constant, and free energy of binding while morphology was deduced from SEM and TEM

    Transboundary Water Governance in the Kabul River Basin: Implementing Environmental and Public Diplomacy Between Pakistan and Afghanistan

    Get PDF
    This research highlights the outcomes of the environmental diplomacy workshop held between members of civil society from Afghanistan and Pakistan on water cooperation in the Kabul River Basin, one of the most heavily conflicted transboundary river basins in the world. Lack of trust among these upstream and downstream riparian partners and persistent failures of Track 1 diplomacy initiatives has led to an absence of governance mechanisms for mitigating the water security concerns in the region. This research shows that science and public diplomacy, democratic participation, and social learning may pave a way to clear local misconceptions, improve transboundary water cooperation, and increase ecological stewardship in the Kabul River Basin

    MHD and Thermal Slip Effects on Viscous Fluid over Symmetrically Vertical Heated Plate in Porous Medium: Keller Box Analysis

    No full text
    The heat transfer characteristics along the non-magnetized shapes have been performed in various previous studies numerically. Due to excessive heating, these mechanisms are less interesting in engineering and industrial processes. In the current analysis, the surface is magnetized, and the fluid is electrically conducting, which is responsible for reducing excessive heating along the surface. The main objective of the present work is to analyze convective heat transfer analysis of viscous fluid flow with thermal slip and thermal radiation effects along the vertical symmetric heated plate immersed in a porous medium numerically. The results are deduced for viscous flow along a magnetized heated surface. The theoretical mechanism of heat and magnetic intensity along a vertical surface is investigated for numerical analysis. The nonlinear-coupled partial differential equations (PDEs) for the above viscous fluid flow mechanism with the symmetry of the conditions normal to the surface are transformed and then converted into non-similar formulations by applying appropriate and well-known similarity transformations for integration and solutions. The final non-similar equations are numerically integrated by employing the Keller box method. The discretized algebraic equations are plotted graphically and numerically on the MATLAB R2013a software package. The main finding of the current analysis is to compute physical quantities such as velocity graph, magnetic field graph, and temperature plot along with their slopes, that is, skin friction, magnetic intensity, and heat transfer for different parameters included in the flow model. First, the velocity graph, magnetic field graph, and temperature graph are obtained, and then their slopes are analyzed numerically along the vertical magnetic surface. It is noticed that fluid velocity is increased at lower magnetic force, but minimum velocity is noticed at maximum magnetic force. It is worth mentioning that with the increase in magnetic force, the magnetic energy increases, which extracts the kinetic energy of the fluid and causes the above-said behavior. Furthermore, the current issues have significant implications for the polymer industries, glass fiber production, petroleum production, fiber spinning, plastic film production, polymer sheet extraction, heat exchangers, catalytic reactors, and the production of electronic devices

    PMMA/ABS/CoCl2 Composites for Pharmaceutical Applications: Thermal, Antimicrobial, Antibiofilm, and Antioxidant Studies

    No full text
    In this study, PMMA/ABS/CoCl2 ternary composite films were fabricated by the solution casting technique. The different weight ratios of cobalt chloride (≤10 wt) were incorporated into the PMMA/ABS blend (80:20). The chemical structure and thermal properties of the synthesized composites were assessed by FT-IR, TGA, and XRD. The biological properties of ternary composites, such as in vitro antibacterial activity and antioxidant capacity, were investigated. The enhanced thermal stability and promising antibacterial, selective antibiofilm, and potential antioxidant properties of PMMA/ABS/cobalt chloride composites demonstrated that they can be used for high-quality plastics and in many pharmaceutical applications
    corecore