3 research outputs found

    Elevated Amyloid-β and Tau Levels in the Brain are Associated with a Reduced Abundance of Neuroprotective Gut Bacteria

    Get PDF
    Background: Recent research suggests that differences in the gut microbiome composition may contribute to the pathogenesis of neurological disorders, including Alzheimer\u27s disease (AD). Animal studies have shown that fecal microbiota transplantation reduces amyloid plaques in mouse AD models. However, whether the buildup of Aβ and tau deposits in the brain are associated with shifts in the human gut microbiota composition is understudied. Method: We used stool specimens and neuropathological measures from 140 middle-aged individuals (Table 1: mean age 56, 54% Female) from the Framingham Heart Study (FHS) to assess the link between the gut microbiome composition and Aβ Positron Emission Tomography (Aβ-PET) in a global composite brain measure, and tau-PET deposits in the rhinal cortex and the inferior temporal cortex. We quantified gut microbiome composition using 16S rRNA sequencing. We performed multivariable association and differential abundance analyses, adjusting for age, sex, body mass index, and other confounders. Result: Multivariable association results (Figure 1) indicated significant associations (adjusted p-value \u3c 0.001) between both Aβ-PET and tau-PET levels with abundance of genera Butyricicoccus and Ruminococcus. Moreover, differential abundance analysis (Figure 2) showed that these bacteria have lower than expected abundance in individuals with elevated Aβ-PET and tau-PET measures (Aβ-PET, Ruminococcus: OR = 0.89, [0.88, 0.91]; Butyricicoccus: OR = 0.77, [0.72, 0.81]); (tau-PET in the rhinal cortex: Ruminococcus: OR = 0.82, [0.8, 0.83]; Butyricicoccus: OR = 0.91 [0.88, 0.94]); (tau-PET in the inferotemporal cortex:, Ruminococcus: OR = 0.79 [0.78, 0.81]; Butyricicoccus: OR = 0.83 [0.81, 0.86]). Conversely, we observed an increased abundance of genera Cytophaga (tau-PET in the rhinal cortex, OR = 1.78, [1.15, 2.75]) and Alistipes (tau-PET in the rhinal cortex, OR = 1.19, [1.17, 1.22]) in individuals with high Aβ-PET and tau-PET levels. Finally, functional analysis showed that Butyricicoccus and Ruminococcus are butyrate-producing bacteria harboring neuroprotective effects. Conclusion: We showed that elevated measures of Aβ-PET and tau-PET in the rhinal and the inferior temporal cortex are associated with a reduced abundance of butyrate-producing Butyricicoccus and Ruminococcus in the gut of middle-aged individuals from the FHS. As these bacteria harbor neuroprotective effects, further studies are needed to elucidate underlying mechanisms and assess their therapeutic potential

    Cerebral small vessel disease burden is associated with decreased abundance of gut Barnesiella intestinihominis bacterium in the Framingham Heart Study

    Get PDF
    A bidirectional communication exists between the brain and the gut, in which the gut microbiota influences cognitive function and vice-versa. Gut dysbiosis has been linked to several diseases, including Alzheimer\u27s disease and related dementias (ADRD). However, the relationship between gut dysbiosis and markers of cerebral small vessel disease (cSVD), a major contributor to ADRD, is unknown. In this cross-sectional study, we examined the connection between the gut microbiome, cognitive, and neuroimaging markers of cSVD in the Framingham Heart Study (FHS). Markers of cSVD included white matter hyperintensities (WMH), peak width of skeletonized mean diffusivity (PSMD), and executive function (EF), estimated as the difference between the trail-making tests B and A. We included 972 FHS participants with MRI scans, neurocognitive measures, and stool samples and quantified the gut microbiota composition using 16S rRNA sequencing. We used multivariable association and differential abundance analyses adjusting for age, sex, BMI, and education level to estimate the association between gut microbiota and WMH, PSMD, and EF measures. Our results suggest an increased abundance of Pseudobutyrivibrio and Ruminococcus genera was associated with lower WMH and PSMD (p values \u3c 0.001), as well as better executive function (p values \u3c 0.01). In addition, in both differential and multivariable analyses, we found that the gram-negative bacterium Barnesiella intestinihominis was strongly associated with markers indicating a higher cSVD burden. Finally, functional analyses using PICRUSt implicated various KEGG pathways, including microbial quorum sensing, AMP/GMP-activated protein kinase, phenylpyruvate, and β-hydroxybutyrate production previously associated with cognitive performance and dementia. Our study provides important insights into the association between the gut microbiome and cSVD, but further studies are needed to replicate the findings
    corecore