4 research outputs found

    Effect of Load Model Using Ranking Identification Technique for Multi Type DG Incorporating Embedded Meta EP-Firefly Algorithm

    No full text
    This paper presents the effect of load model prior to the distributed generation (DG) planning in distribution system. In achieving optimal allocation and placement of DG, a ranking identification technique was proposed in order to study the DG planning using pre-developed Embedded Meta Evolutionary Programming–Firefly Algorithm. The aim of this study is to analyze the effect of different type of DG in order to reduce the total losses considering load factor. To realize the effectiveness of the proposed technique, the IEEE 33 bus test systems was utilized as the test specimen. In this study, the proposed techniques were used to determine the DG sizing and the suitable location for DG planning. The results produced are utilized for the optimization process of DG for the benefit of power system operators and planners in the utility. The power system planner can choose the suitable size and location from the result obtained in this study with the appropriate company’s budget. The modeling of voltage dependent loads has been presented and the results show the voltage dependent load models have a significant effect on total losses of a distribution system for different DG type

    Effect of Load Model Using Ranking Identification Technique for Multi Type DG Incorporating Embedded Meta EP-Firefly Algorithm

    No full text
    This paper presents the effect of load model prior to the distributed generation (DG) planning in distribution system. In achieving optimal allocation and placement of DG, a ranking identification technique was proposed in order to study the DG planning using pre-developed Embedded Meta Evolutionary Programming–Firefly Algorithm. The aim of this study is to analyze the effect of different type of DG in order to reduce the total losses considering load factor. To realize the effectiveness of the proposed technique, the IEEE 33 bus test systems was utilized as the test specimen. In this study, the proposed techniques were used to determine the DG sizing and the suitable location for DG planning. The results produced are utilized for the optimization process of DG for the benefit of power system operators and planners in the utility. The power system planner can choose the suitable size and location from the result obtained in this study with the appropriate company’s budget. The modeling of voltage dependent loads has been presented and the results show the voltage dependent load models have a significant effect on total losses of a distribution system for different DG type

    Protection Relay Setting based on Overcurrent Phenomena in Commercial Building

    No full text
    Nowadays, every single distribution system needs to install an appropriate relay to keep the system safe. The operational and commonly recommended relay for distribution systems is the overcurrent (OC) relay. Throughout the distribution system, the protective relay is one of the methods that can detect and protect the location according to its observation from any fault from abnormal activity. Note that time coordination between the protective equipment relay needs to be a minimum of time interruption to prevent faults occurs. The ideal setting for all coordination protection relays is necessary to protect the device against electrical failure and interference. This paper analyzes the real results data collected for the selected commercial building of an OC relay implemented in a distribution board for high voltage and low voltage downward at a commercial building. All the parameters need to be clarified first before testing has been made and measurement is carried out using the MICROTEST 860 set. Based on the analysis, it proves that according to the IEC Standard of 0.10-time multiplier Setting (TMS) is practical to be used to obtain the operation time in seconds for the current curve set. Other than that, the results show that the normal inverse curve from manual calculation results is more accurate compared to the service setting (SS) made based on the incoming setting in a real commercial building. The case study for OC relay setting is related between current injection and time-tripping, which complies with the IEC 60255-3 standard using its formula. This method was applied to determine the characteristics of the curve. Hence, this research successfully determined the proper methods for the OC relay setting for the power distribution system. Besides, the feasibility and efficiency of OC relay data transmission are tested and checked successfully to implement the measurement method in the relay coordination study
    corecore