4 research outputs found

    Regenerated Cellulose Products for Agricultural and Their Potential: A Review

    No full text
    Cellulose is one of the most abundant natural polymers with excellent biocompatibility, non-toxicity, flexibility, and renewable source. Regenerated cellulose (RC) products result from the dissolution-regeneration process risen from solvent and anti-solvent reagents, respectively. The regeneration process changes the cellulose chain conformation from cellulose I to cellulose II, leads the structure to have more amorphous regions with improved crystallinity, and inclines towards extensive modification on the RC products such as hydrogel, aerogel, cryogel, xerogel, fibers, membrane, and thin film. Recently, RC products are accentuated to be used in the agriculture field to develop future sustainable agriculture as alternatives to conventional agriculture systems. However, different solvent types and production techniques have great influences on the end properties of RC products. Besides, the fabrication of RC products from solely RC lacks excellent mechanical characteristics. Thus, the flexibility of RC has allowed it to be homogenously blended with other materials to enhance the final products’ properties. This review will summarize the properties and preparation of potential RC-based products that reflect its application to replace soil the plantation medium, govern the release of the fertilizer, provide protection on crops and act as biosensors

    Hydrogel Application in Urban Farming: Potentials and Limitations—A Review

    Get PDF
    Urban agriculture plays a vital role in ensuring the self-sufficiency of a great variety of fresh vegetables and nutrients. It promotes a sustainable food system as well as reducing the dependency on imports for the growing population. Urban farming has made it possible for agriculture practices to be implemented anywhere at any time in a sophisticated way. Hydrogel has been introduced in urban agriculture in the past few decades. However, the application of hydrogel in urban agriculture is still being explored in terms of hydrogel types, structure, physical and chemical properties, change due to external factors, and its suitability for different plant species. This review discusses the potentials and limitations of hydrogel in different application conditions. We present the state of knowledge on hydrogel production and crosslinking methods, hydrogel characteristics, water absorption and release mechanisms of hydrogel, hydrogel advantages and limitations, and current and future applications in urban farming

    Morpho-Physiology and Antioxidant Enzyme Activities of Transgenic Rice Plant Overexpressing ABP57 under Reproductive Stage Drought Condition

    No full text
    MR219 transgenic rice line which overexpressed an auxin-binding protein (ABP57) and its wild-type cultivar, MR219, were screened under well-watered (WW) and drought stress (DS) conditions at the early reproductive stage. This study was conducted with the standard planting distance and under a normal environment to assess the yield advantages based on the field conditions. The aim of this study was to understand the response of these rice genotypes towards DS at morpho-physiological, biochemical, and agronomical levels. It was found that the DS had affected all these levels of the genotypes studied; however, the transgenic plant showed a higher number of tillers, flag leaf area, biomass, relative water content, total chlorophyll content, and antioxidative defense mechanism than the MR219 under DS. Compared to its wild-type, the transgenic plant showed an increased leaf photosynthetic rate by 7% under WW and 11% under DS. The transgenic plant also showed higher yields than MR219 under the WW (10%) and DS (59%). The results propose that drought tolerance is significantly improved in the MR219 transgenic rice line. It may develop a new opportunity for the drought-tolerant rice breeding programme via overexpression of ABP57
    corecore