20 research outputs found

    Arctic sea-ice proxies: Comparisons between biogeochemical and micropalaeontological reconstructions in a sediment archive from Arctic Canada

    Get PDF
    Boxcore 99LSSL-001 from the southwest Canadian Arctic Archipelago (68.095°N, 114.186°W), studied by multiproxy approaches (sea-ice diatom biomarker IP25, phytoplankton-based biomarker brassicasterol, biogenic silica, total organic carbon, dinoflagellate cysts = dinocysts, diatoms) and their applications (sea-ice index PBIP25, modern analogue technique (MAT) transfer functions), provides a chronologically constrained (210Pb, 137Cs, two 14C dates) palaeoenvironmental archive spanning AD 1625–1999 with which to compare and evaluate proxies frequently used in sea-ice reconstructions. Whereas diatoms are rare, PBIP25, biogenic silica and qualitative dinocyst approaches show good agreement, suggesting that palaeo sea-ice histories based on biomarker and microfossil techniques are robust in this region. These combined approaches show fluctuating long open water to marginal ice zone conditions (AD 1625–1740), followed by high-amplitude oscillations between long open water and extended spring/summer sea ice (AD 1740–1870). Greater ice cover (AD 1870–1970) precedes recent reductions in seasonal sea ice (AD 1970–1999). Dinocyst-based MAT, however, produces a low-amplitude signal lacking the nuances of other proxies, with most probable sea-ice reconstructions poorly correlating with biomarker-based histories. Explanations for this disagreement may include limited spatial coverage in the modern dinocyst distribution database for MAT and the broad environmental tolerances of polar dinocysts. Overall, PBIP25 provides the most detailed palaeo sea-ice signal, although its use in a shallow polar archipelago downcore setting poses methodological challenges. This proxy comparison demonstrates the limitations of palaeo sea-ice reconstructions and emphasizes the need for calibration studies tying modern microfossil and biogeochemical proxies to directly measured oceanographic parameters, as a springboard for robust quantitative palaeo studies. </jats:p

    COVID-19 transmission dynamics underlying epidemic waves in Kenya

    Get PDF
    Policy decisions on COVID-19 interventions should be informed by a local, regional and national understanding of SARS-CoV-2 transmission. Epidemic waves may result when restrictions are lifted or poorly adhered to, variants with new phenotypic properties successfully invade, or when infection spreads to susceptible sub-populations. Three COVID-19 epidemic waves have been observed in Kenya. Using a mechanistic mathematical model, we explain the first two distinct waves by differences in contact rates in high and low social-economic groups, and the third wave by the introduction of higher-transmissibility variants. Reopening schools led to a minor increase in transmission between the second and third waves. Socio-economic and urban/rural population structure are critical determinants of viral transmission in Kenya

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Summary Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    Stabilized Liposomes transdermal patch for loaded antioxidants skin therapy

    No full text
    As the largest organ in the body, skin acts a protective barrier insulating other organs from physical, chemical or biological damage. Skin aging triggered by sun’s ultraviolet rays, and pollution decrease its protective barrier and it’s physiological functional properties. The research hunt is on by cosmetic industry and dermatologist for effective therapeutic technologies to slow and reverse skin aging. Some modern skin antiaging therapy include the radiofrequency technology that work on the basis of thermal energy application onto the skin, believed to induce dermal and epidermal remodeling, which triggers regeneration.1,2 This is an expensive, public inaccessible therapeutic technology, and as such an economical approach remain the use of anti-aging skin care products with functional compounds called antioxidants, which protects the skin from free radical oxidative processes that induce skin aging. Numerous antioxidants exist, —e.g. retinol, algae oil, and lecithin, — however there remains a challenge for optimal transdermal delivery of these compounds the epidermis to afford effective skin protection. In addition, antioxidants are environmentally unstable, and lose their potency with exposure. As such, approach to mitigate both the instability and as a delivery vehicle is the use of liposome technology. Liposome is a (nano) or microsphere with an aqueous center pocket (houses the anti-aging agent) and a lipid exterior, a dual structure that affords skin penetration.3,4 As a proof concept, we have developed polyhydroxylated fatty acid (polyol) liposome and used it to encapsulate a model antiaging agent. The polylol liposomes was compared with lecithin based liposomes for controlled release on the anti-aging agent. Towards a fabrication of a dermatologist usable device, we have demonstrated a prototype voltage responsive biobased transdermal patch impregnated with antioxidant loaded liposomes, with controlled release of the antiaging agent triggered by disruption of the liposomes by a mild voltage application. Our presentation, will showcase the developed prototype. &nbsp; Reference &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Deirdre, C.; Laura, L.; Nazanin, Saedi. Semin Cutan Med Surg. 2017. 36. 138-147. &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Krista, B.; Anderw, D.; Neil, S. J Cosmet Dermatol. 2018. 17. 61-65. &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Makoto, T.; Dai, K.; Yonathan, A.; Kensaku, T.; Koji, W. Journal of Oleo Science. 2009, 12, 643-650. &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Sala, M.; Diab, R.; Elaissari, A.; Fessi, A. Lipid Nanocarriers as Skin Drug Delivery Systems: Properties, Mechanisms of Skin Interactions and Medical Applications. Int J Pharm. 2018 Jan 15;535(1-2):1-17. *Indicates presente

    A Wearable, Textile-Based Polyacrylate Imprinted Electrochemical Sensor for Cortisol Detection in Sweat

    No full text
    A wearable, textile-based molecularly imprinted polymer (MIP) electrochemical sensor for cortisol detection in human sweat has been demonstrated. The wearable cortisol sensor was fabricated via layer-by-layer assembly (LbL) on a flexible cotton textile substrate coated with a conductive nanoporous carbon nanotube/cellulose nanocrystal (CNT/CNC) composite suspension, conductive polyaniline (PANI), and a selective cortisol-imprinted poly(glycidylmethacrylate-co-ethylene glycol dimethacrylate) (poly(GMA-co-EGDMA)) decorated with gold nanoparticles (AuNPs), or plated with gold. The cortisol sensor rapidly (&lt;2 min) responded to 9.8&ndash;49.5 ng/mL of cortisol, with an average relative standard deviation (%RSD) of 6.4% across the dynamic range, indicating excellent precision. The cortisol sensor yielded an excellent limit of detection (LOD) of 8.00 ng/mL, which is within the typical physiological levels in human sweat. A single cortisol sensor patch could be reused 15 times over a 30-day period with no loss in performance, attesting to excellent reusability. The cortisol sensor patch was successfully verified for use in quantification of cortisol levels in human sweat

    Stimuli Responsive Polymer-Based 3D Optical Crystals for Sensing

    No full text
    3D optical crystals have found their applications in sensing, actuation, optical devices, batteries, supercapacitors, etc. The 3D optical crystal devices are comprised of two main components: colloidal gels and nanoparticles. Nanoparticles self-assemble into face center cubic structures in colloidal gels. The inherent 3D optical crystal structure leads to display of structural colors on these devices following light impingement. As such, these optical properties have led to the utilization of these 3D optical crystals as self-reporting colorimetric sensors, which is the focus of this review paper. While there is extensive work done so far on these materials to exhaustively be covered in this review, we focus here in on: mechanism of color display, materials and preparation of 3D optical crystals, introduction of recent sensing examples, and combination of 3D optical crystals with molecular imprinting technology. The aim of this review is to familiarize the reader with recent developments in the area and to encourage further research in this field to overcome some of its challenges as well as to inspire creative innovations of these materials

    A Multipurpose and Multilayered Microneedle Sensor for Redox Potential Monitoring in Diverse Food Analysis

    No full text
    This work presents a multipurpose and multilayered stainless steel microneedle sensor for the in situ redox potential monitoring in food and drink samples, termed MN redox sensor. The MN redox sensor was fabricated by layer-by-layer (LbL) approach. The in-tube multilayer coating comprised carbon nanotubes (CNTs)/cellulose nanocrystals (CNCs) as the first layer, polyaniline (PANI) as the second layer, and the ferrocyanide redox couple as the third layer. Using cyclic voltammetry (CV) as a transduction method, the MN redox sensor showed facile electron transfer for probing both electrical capacitance and redox potential, useful for both analyte specific and bulk quantification of redox species in various food and drink samples. The bulk redox species were quantified based on the anodic/cathodic redox peak shifts (Ea/Ec) on the voltammograms resulting from the presence of redox-active species. The MN redox sensor was applied to detect selected redox species including ascorbic acid, H2O2, and putrescine, with capacitive limits of detection (LOD) of 49.9, 17.8, and 263 ng/mL for each species, respectively. For the bulk determination of redox species, the MN redox sensor displayed LOD of 5.27 Ă— 103, 55.4, and 25.8 ng/mL in ascorbic acid, H2O2, and putrescine equivalents, respectively. The sensor exhibited reproducibility of ~1.8% relative standard deviation (%RSD). The MN redox sensor was successfully employed for the detection of fish spoilage and antioxidant quantification in king mushroom and brewed coffee samples, thereby justifying its potential for food quality and food safety applications. Lastly, the portability, reusability, rapid sampling time, and capability of in situ analysis of food and drink samples makes it amenable for real-time sensing applications

    Molecularly Imprinted Polymer-Modified Microneedle Sensor for the Detection of Imidacloprid Pesticides in Food Samples

    No full text
    A portable, molecularly imprinted polymer (MIP)-based microneedle (MN) sensor for the electrochemical detection of imidacloprid (IDP) has been demonstrated. The MN sensor was fabricated via layer-by-layer (LbL) in-tube coating using a carbon nanotube (CNT)/cellulose nanocrystal (CNC) composite, and an IDP-imprinted polyaniline layer co-polymerized with imidazole-functionalized CNCs (PANI-co-CNC-Im) as the biomimetic receptor film. The sensor, termed MIP@CNT/CNC MN, was analyzed using both cyclic voltammetry (CV) and differential pulse voltammetry (DPV) and showed excellent electrochemical performance for the detection of IDP. The CV detection range for IDP was 2.0–99 µM, with limits of detection (LOD) of 0.35 µM, while the DPV detection range was 0.20–92 µM with an LOD of 0.06 µM. Additionally, the MIP@CNT/CNC MN sensor showed excellent reusability and could be used up to nine times with a 1.4 % relative standard deviation (% RSD) between uses. Lastly, the MIP@CNT/CNC MN sensor successfully demonstrated the quantification of IDP in a honey sample
    corecore