10 research outputs found

    Need satisfaction in intergroup contact:A multinational study of pathways toward social change

    Get PDF
    none43siFinanziamenti esterni a vari co-autoriWhat role does intergroup contact play in promoting support for social change toward greater social equality? Drawing on the needs-based model of reconciliation, we theorized that when inequality between groups is perceived as illegitimate, disadvantaged group members will experience a need for empowerment and advantaged group members a need for acceptance. When intergroup contact satisfies each group's needs, it should result in more mutual support for social change. Using four sets of survey data collected through the Zurich Intergroup Project in 23 countries, we tested several preregistered predictions, derived from the above reasoning, across a large variety of operationalizations. Two studies of disadvantaged groups (Ns = 689 ethnic minority members in Study 1 and 3,382 sexual/gender minorities in Study 2) support the hypothesis that, after accounting for the effects of intergroup contact and perceived illegitimacy, satisfying the need for empowerment (but not acceptance) during contact is positively related to support for social change. Two studies with advantaged groups (Ns = 2,937 ethnic majority members in Study 3 and 4,203 cis-heterosexual individuals in Study 4) showed that, after accounting for illegitimacy and intergroup contact, satisfying the need for acceptance (but also empowerment) is positively related to support for social change. Overall, findings suggest that intergroup contact is compatible with efforts to promote social change when group-specific needs are met. Thus, to encourage support for social change among both disadvantaged and advantaged group members, it is essential that, besides promoting mutual acceptance, intergroup contact interventions also give voice to and empower members of disadvantaged groups.mixedHässler, Tabea; Ullrich, Johannes; Sebben, Simone; Shnabel, Nurit; Bernardino, Michelle; Valdenegro, Daniel; Van Laar, Colette; González, Roberto; Visintin, Emilio Paolo; Tropp, Linda R; Ditlmann, Ruth K; Abrams, Dominic; Aydin, Anna Lisa; Pereira, Adrienne; Selvanathan, Hema Preya; von Zimmermann, Jorina; Lantos, Nóra Anna; Sainz, Mario; Glenz, Andreas; Kende, Anna; Oberpfalzerová, Hana; Bilewicz, Michal; Branković, Marija; Noor, Masi; Pasek, Michael H; Wright, Stephen C; Žeželj, Iris; Kuzawinska, Olga; Maloku, Edona; Otten, Sabine; Gul, Pelin; Bareket, Orly; Corkalo Biruski, Dinka; Mugnol-Ugarte, Luiza; Osin, Evgeny; Baiocco, Roberto; Cook, Jonathan E; Dawood, Maneeza; Droogendyk, Lisa; Loyo, Angélica Herrera; Jelić, Margareta; Kelmendi, Kaltrina; Pistella, JessicaHässler, Tabea; Ullrich, Johannes; Sebben, Simone; Shnabel, Nurit; Bernardino, Michelle; Valdenegro, Daniel; Van Laar, Colette; González, Roberto; Visintin, Emilio Paolo; Tropp, Linda R; Ditlmann, Ruth K; Abrams, Dominic; Aydin, Anna Lisa; Pereira, Adrienne; Selvanathan, Hema Preya; von Zimmermann, Jorina; Lantos, Nóra Anna; Sainz, Mario; Glenz, Andreas; Kende, Anna; Oberpfalzerová, Hana; Bilewicz, Michal; Branković, Marija; Noor, Masi; Pasek, Michael H; Wright, Stephen C; Žeželj, Iris; Kuzawinska, Olga; Maloku, Edona; Otten, Sabine; Gul, Pelin; Bareket, Orly; Corkalo Biruski, Dinka; Mugnol-Ugarte, Luiza; Osin, Evgeny; Baiocco, Roberto; Cook, Jonathan E; Dawood, Maneeza; Droogendyk, Lisa; Loyo, Angélica Herrera; Jelić, Margareta; Kelmendi, Kaltrina; Pistella, Jessic

    The self-assembling peptide P-11-4 prevents collagen proteolysis in dentin

    No full text
    The major goal in restorative dentistry is to develop a true regenerative approach that fully recovers hydroxyapatite crystals within the caries lesion. Recently, a rationally designed self-assembling peptide P-11-4 (Ace-QQRFEWEFEQQ-NH2) has been developed to enhance remineralization on initial caries lesions, yet its applicability on dentin tissues remains unclear. Thus, the present study investigated the interaction of P-11-4 with the organic dentin components as well as the effect of P-11-4 on the proteolytic activity, mechanical properties of the bonding interface, and nanoleakage evaluation to artificial caries-affected dentin. Surface plasmon resonance and atomic force microscopy indicated that P-11-4 binds to collagen type I fibers, increasing their width from 214 +/- 4 nm to 308 +/- 5 nm (P < 0.0001). P-11-4 also increased the resistance of collagen type I fibers against the proteolytic activity of collagenases. The immediate treatment of artificial caries-affected dentin with P-11-4 enhanced the microtensile bonding strength of the bonding interface (P < 0.0001), reaching values close to sound dentin and decreasing the proteolytic activity at the hybrid layer; however, such effects decreased after 6 mo of water storage (P < 0.05). In conclusion, P-11-4 interacts with collagen type I, increasing the resistance of collagen fibers to proteolysis, and improves stability of the hybrid layer formed by artificial caries-affected dentin983347354CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPsem informaçãosem informação2013/05822-9; 2014/22899-8; 2015/12660-0; 2013/05822-9; 2014//22899-8; 2015/03964-
    corecore