3 research outputs found

    Antimicrobial Resistance Situational Analysis 2019−2020: Design and Performance for Human Health Surveillance in Uganda

    Get PDF
    Antibiotic resistance and its mechanisms have been known for over six decades, but global efforts to characterize its routine drivers have only gained momentum in the recent past. Drivers of clinical and community resistance go beyond just clinical practice, which is why one-health approaches offer the most realistic option for controlling antibiotic resistance. It is noteworthy that the emergence of resistance occurs naturally in the environment, but akin to climate change, the current accelerated emergence and spread bears hallmarks of anthropomorphic influence. If left unchecked, this can undo the medical and agricultural advancements of the last century. The WHO recommends that nations develop, adopt, and implement strategies that track the changing trends in antibiotic resistance levels to tackle this problem. This article examines efforts and progress in developing and implementing a human health antimicrobial resistance surveillance strategy in Uganda. We do so within the context of the National Action Plan for tackling antimicrobial resistance (AMR-NAP) launched in 2018. We discuss the technical milestones and progress in implementing surveillance of GLASS priority pathogens under this framework. The preliminary output of the framework examines the performance and compares AMR and AMU surveillance data to explain observed trends. We conclude that Uganda is making progress in developing and implementing a functional AMR surveillance strategy for human health

    Implementation of the World Health Organization Global Antimicrobial Resistance Surveillance System in Uganda, 2015-2020: Mixed-Methods Study Using National Surveillance Data

    No full text
    BackgroundAntimicrobial resistance (AMR) is an emerging public health crisis in Uganda. The World Health Organization (WHO) Global Action Plan recommends that countries should develop and implement National Action Plans for AMR. We describe the establishment of the national AMR program in Uganda and present the early microbial sensitivity results from the program. ObjectiveThe aim of this study is to describe a national surveillance program that was developed to perform the systematic and continuous collection, analysis, and interpretation of AMR data. MethodsA systematic qualitative description of the process and progress made in the establishment of the national AMR program is provided, detailing the progress made from 2015 to 2020. This is followed by a report of the findings of the isolates that were collected from AMR surveillance sites. Identification and antimicrobial susceptibility testing (AST) of the bacterial isolates were performed using standard methods at both the surveillance sites and the reference laboratory. ResultsRemarkable progress has been achieved in the establishment of the national AMR program, which is guided by the WHO Global Laboratory AMR Surveillance System (GLASS) in Uganda. A functional national coordinating center for AMR has been established with a supporting designated reference laboratory. WHONET software for AMR data management has been installed in the surveillance sites and laboratory staff trained on data quality assurance. Uganda has progressively submitted data to the WHO GLASS reporting system. Of the 19,216 isolates from WHO GLASS priority specimens collected from October 2015 to June 2020, 22.95% (n=4411) had community-acquired infections, 9.46% (n=1818) had hospital-acquired infections, and 68.57% (n=12,987) had infections of unknown origin. The highest proportion of the specimens was blood (12,398/19,216, 64.52%), followed by urine (5278/19,216, 27.47%) and stool (1266/19,216, 6.59%), whereas the lowest proportion was urogenital swabs (274/19,216, 1.4%). The mean age was 19.1 (SD 19.8 years), whereas the median age was 13 years (IQR 28). Approximately 49.13% (9440/19,216) of the participants were female and 50.51% (9706/19,216) were male. Participants with community-acquired infections were older (mean age 28, SD 18.6 years; median age 26, IQR 20.5 years) than those with hospital-acquired infections (mean age 17.3, SD 20.9 years; median age 8, IQR 26 years). All gram-negative (Escherichia coli, Klebsiella pneumoniae, and Neisseria gonorrhoeae) and gram-positive (Staphylococcus aureus and Enterococcus sp) bacteria with AST showed resistance to each of the tested antibiotics. ConclusionsUganda is the first African country to implement a structured national AMR surveillance program in alignment with the WHO GLASS. The reported AST data indicate very high resistance to the recommended and prescribed antibiotics for treatment of infections. More effort is required regarding quality assurance of laboratory testing methodologies to ensure optimal adherence to WHO GLASS–recommended pathogen-antimicrobial combinations. The current AMR data will inform the development of treatment algorithms and clinical guidelines

    Table1_An open-source digital contact tracing system tailored to haulage.docx

    No full text
    Digital contact tracing presents numerous advantages compared to manual contact tracing methods, especially in terms of enhanced speed and automation. Nevertheless, a lack of comprehensive evaluation regarding functionality, efficiency, benefits, and acceptance within communities remains. Here we primarily focus on the functionality of THEA-GS, an open-source digital contact tracing tool developed through consultation with stakeholders. Additionally, we provide insights from its implementation on a limited sample of haulage drivers in Uganda, serving as a representative case for a low- and middle-income country. THEA-GS comprises two primary components: (a) a smartphone application, and (b) a suite of server-programs responsible for data processing and analysis, including databases and a web-based interface featuring dashboards. In essence, the mobile application records the timestamped location of haulage drivers within the road network and identifies possible transmission hotspots by analyzing factors such as the duration of stops and the communities associated with them. The tool can be integrated with national infrastructure to compare drivers’ diagnostic results and contact structure, thereby generating individual and community risk assessments relative to the road network. During the Omicron-variant wave of the COVID-19 pandemic, a total of 3,270 haulage drivers were enrolled between October 2021 and October 2022. Around 75% of these drivers utilized THEA-GS for approximately two months. Based on an analysis of 3,800 test results, which included 48 positive cases, 125 contacts, and 40 million time-stamped GPS points, THEA-GS shows a significant speed improvement, being approximately 90 times faster than MCT. For instance, the average time from sample collection to notifying a case and their contacts was approximately 70 and 80 min, respectively. The adoption of this tool encountered challenges, mainly due to drivers’ awareness of its purpose and benefits for public health. THEA-GS is a place-based digital contact tracing tool specifically designed to assist National Public Health Institutions in managing infectious disease outbreaks involving the haulage industry as a high-risk group. While its utility, acceptance, and accuracy have not been fully evaluated, our preliminary tests conducted in Uganda indicate the tool’s functionality is robust, but social acceptance and adoption are heavily reliant on establishing trust among users.</p
    corecore