14 research outputs found

    A gene signature derived from the loss of cdkn1a (P21) is associated with CMS4 colorectal cancer

    Get PDF
    The epithelial–mesenchymal transition (EMT) is associated with tumor aggressiveness and increased invasion, migration, metastasis, angiogenesis, and drug resistance. Although the HCT116 p21-/- cell line is well known for its EMT-associated phenotype, with high Vimentin and low E-cadherin protein levels, the gene signature of this rather intermediate EMT-like cell line has not been determined so far. In this work, we present a robust molecular and bioinformatics analysis, to reveal the associated gene expression profile and its correlation with different types of colorectal cancer tumors. We compared the quantitative signature obtained with the NanoString platform with the expression profiles of colorectal cancer (CRC) Consensus Molecular Subtypes (CMS) as identified, and validated the results in a large independent cohort of human tumor samples. The expression signature derived from the p21-/- cells showed consistent and reliable numbers of upregulated and downregulated genes, as evaluated with two machine learning methods against the four CRC subtypes (i.e., CMS1, 2, 3, and 4). High concordance was found between the upregulated gene signature of HCT116 p21-/- cells and the signature of the CMS4 mesenchymal subtype. At the same time, the upregulated gene signature of the native HCT116 cells was similar to that of CMS1. Using a multivariate Cox regression model to analyze the survival data in the CRC tumor cohort, we selected genes that have a predictive risk power (with a significant gene risk incidence score). A set of genes of the mesenchymal signature was proven to be significantly associated with poor survival, specifically in the CMS4 CRC human cohort. We suggest that the gene signature of HCT116 p21-/- cells could be a suitable metric for mechanistic studies regarding the CMS4 signature and its functional consequences in CRC. Moreover, this model could help to discover the molecular mechanisms of intermediate EMT, which is known to be associated with extraordinarily high stemness and drug resistance.R.S.-S. was supported by the Emerging Fields Initiative ‘Cell Cycle in Disease and Regeneration’ (CYDER) of the Friedrich Alexander University (Erlangen-NĂŒrnberg, Germany). This article is partly based upon work from COST Action CA17118 TRANSCOLONCAN, supported by COST (European Cooperation in Science and Technology, www.cost.eu, last accessed 20 December 2021). The JDLR research group is supported by the Spanish Government, Instituto de Salud Carlos III (ISCiii, AES project PI18/00591) co-funded by FEDER/ERDF (European Regional Development Fund)

    Ferrocenyl-coupled n-heterocyclic carbene complexes of gold(i): a successful approach to multinuclear anticancer drugs

    Get PDF
    Four gold(I) carbene complexes featuring 4-ferrocenyl substituted imidazol-2-ylidene ligands were investigated for antiproliferative and antivascular properties. They were active against a panel of seven cancer cell lines, including multidrug-resistant ones, with low micromolar or nanomolar IC50 (72 h) values, according to their lipophilicity and cellular uptake. The delocalised lipophilic cationic complexes 8 and 10 acted by increasing the reactive oxygen species in two ways: via a genuine ferrocene effect and by inhibiting the thioredoxin reductase. Both complexes gave rise to a reorganization of the F-actin cytoskeleton in endothelial and melanoma cells, associated with a G1 phase cell cycle arrest and a retarded cell migration. They proved antiangiogenic in tube formation assays with endothelial cells and vascular-disruptive on real blood vessels in the chorioallantoic membrane of chicken eggs. Biscarbene complex 10 was also tolerated well by mice where it led to a volume reduction of xenograft tumors by up to 80%

    A multi-target caffeine derived rhodium(i) N-heterocyclic carbene complex: evaluation of the mechanism of action.

    Get PDF
    A rhodium(i) and a ruthenium(ii) complex with a caffeine derived N-heterocyclic carbene (NHC) ligand were biologically investigated as organometallic conjugates consisting of a metal center and a naturally occurring moiety. While the ruthenium(ii) complex was largely inactive, the rhodium(i) NHC complex displayed selective cytotoxicity and significant anti-metastatic and in vivo anti-vascular activities and acted as both a mammalian and an E. coli thioredoxin reductase inhibitor. In HCT-116 cells it increased the reactive oxygen species level, leading to DNA damage, and it induced cell cycle arrest, decreased the mitochondrial membrane potential, and triggered apoptosis. This rhodium(i) NHC derivative thus represents a multi-target compound with promising anti-cancer potential

    Adjusting the DNA interaction and anticancer activity of pt(ii) n-heterocyclic carbene complexes by steric shielding of the trans leaving group

    Get PDF
    Five platinum(II) complexes bearing a (1,3-dibenzyl)imidazol-2-ylidene ligand but different leaving groups trans to it were examined for cytotoxicity, DNA and cell cycle interference, vascular disrupting properties, and nephrotoxicity. The cytotoxicity of complexes 3a–c increased with the steric shielding of their leaving chloride ligand, and complex 3c, featuring two triphenylphosphanes, was the most efficacious, with submicromolar IC50 concentrations. Complexes 3a–c interacted with DNA in electrophoretic mobility shift and ethidium bromide binding assays. The cationic complex 3c did not bind coordinatively to DNA but led to its aggregation, damage that is not amenable to the usual repair mechanisms. Accordingly, it arrested the cell cycle of melanoma cells in G1 phase, whereas cis-dichlorido[(1,3-dibenzyl)imidazol-2-ylidene](dimethyl sulfoxide) platinum(II) 3a induced G2/M phase arrest. Complex 3c also disrupted the blood vessels in the chorioallantoic membrane of fertilized chicken eggs. Ex vivo studies using precision-cut tissue slices suggested the nephrotoxicities of 3a–c to be clinically manageable

    Gene expression and promoter methylation of angiogenic and lymphangiogenic factors as prognostic markers in melanoma

    No full text
    The high mortality rate of melanoma is broadly associated with its metastatic potential. Tumor cell dissemination is strictly dependent on vascularization; therefore, angiogenesis and lymphangiogenesis play an essential role in metastasis. Hence, a better understanding of the players of tumor vascularization and establishing them as new molecular biomarkers might help to overcome the poor prognosis of melanoma patients. Here, we further characterized a linear murine model of melanoma progression and showed that the aggressiveness of melanoma cells is closely associated with high expression of angiogenic factors, such as Vegfc, Angpt2, and Six1, and that blockade of the vascular endothelial growth factor pathway by the inhibitor axitinib abrogates their tumorigenic potential in vitro and in the in vivo chicken chorioallantoic membrane assay. Furthermore, analysis of The Cancer Genome Atlas data revealed that the expression of the angiogenic factor ANGPT2 (P‐value = 0.044) and the lymphangiogenic receptor VEGFR‐3 (P‐value = 0.002) were independent prognostic factors of overall survival in melanoma patients. Enhanced reduced representation bisulfite sequencing‐based methylome profiling revealed for the first time a link between abnormal VEGFC, ANGPT2, and SIX1 gene expression and promoter hypomethylation in melanoma cells. In patients, VEGFC (P‐value = 0.031), ANGPT2 (P‐value < 0.001), and SIX1 (P‐value = 0.009) promoter hypomethylation were independent prognostic factors of shorter overall survival. Hence, our data suggest that these angio‐ and lymphangiogenesis factors are potential biomarkers of melanoma prognosis. Moreover, these findings strongly support the applicability of our melanoma progression model to unravel new biomarkers for this aggressive human disease

    Cytoplasmic p21 Mediates 5-Fluorouracil Resistance by Inhibiting Pro-Apoptotic Chk2

    No full text
    The oncogenic cytoplasmic p21 contributes to cancer aggressiveness and chemotherapeutic failure. However, the molecular mechanisms remain obscure. Here, we show for the first time that cytoplasmic p21 mediates 5-Fluorouracil (5FU) resistance by shuttling p-Chk2 out of the nucleus to protect the tumor cells from its pro-apoptotic functions. We observed that cytoplasmic p21 levels were up-regulated in 5FU-resistant colorectal cancer cells in vitro and the in vivo Chorioallantoic membrane (CAM) model. Kinase array analysis revealed that p-Chk2 is a key target of cytoplasmic p21. Importantly, cytoplasmic form of p21 mediated by p21T145D transfection diminished p-Chk2-mediated activation of E2F1 and apoptosis induction. Co-immunoprecipitation, immunofluorescence, and proximity ligation assay showed that p21 forms a complex with p-Chk2 under 5FU exposure. Using in silico computer modeling, we suggest that the p21/p-Chk2 interaction hindered the nuclear localization signal of p-Chk2, and therefore, the complex is exported out of the nucleus. These findings unravel a novel mechanism regarding an oncogenic role of p21 in regulation of resistance to 5FU-based chemotherapy. We suggest a possible value of cytoplasmic p21 as a prognosis marker and a therapeutic target in colorectal cancer patients

    CCDC 1062990: Experimental Crystal Structure Determination

    No full text
    Related Article: Julienne K. Muenzner, Tobias Rehm, Bernhard Biersack, Angela Casini, Inge A. M. de Graaf, Pawida Worawutputtapong, Awal Noor, Rhett Kempe, Viktor Brabec, Jana Kasparkova, and Rainer Schobert|2015|J.Med.Chem.|58|6283|doi:10.1021/acs.jmedchem.5b00896,An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

    CCDC 1062991: Experimental Crystal Structure Determination

    No full text
    Related Article: Julienne K. Muenzner, Tobias Rehm, Bernhard Biersack, Angela Casini, Inge A. M. de Graaf, Pawida Worawutputtapong, Awal Noor, Rhett Kempe, Viktor Brabec, Jana Kasparkova, and Rainer Schobert|2015|J.Med.Chem.|58|6283|doi:10.1021/acs.jmedchem.5b00896,An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
    corecore