5 research outputs found

    Maternal microchimerism in the livers of patients with Biliary atresia

    Get PDF
    BACKGROUND: Biliary atresia (BA) is a neonatal cholestatic disease of unknown etiology. It is the leading cause of liver transplantation in children. Many similarities exist between BA and graft versus host disease suggesting engraftment of maternal cells during gestation could result in immune responses that lead to BA. The aim of this study was to determine the presence and extent of maternal microchimerism (MM) in the livers of infants with BA. METHODS: Using fluorescent in situ hybridization (FISH), 11 male BA & 4 male neonatal hepatitis (NH) livers, which served as controls, were analyzed for X and Y-chromosomes. To further investigate MM in BA, 3 patients with BA, and their mothers, were HLA typed. Using immunohistochemical stains, the BA livers were examined for MM. Four additional BA livers underwent analysis by polymerase chain reaction (PCR) for evidence of MM. RESULTS: By FISH, 8 BA and 2 NH livers were interpretable. Seven of eight BA specimens showed evidence of MM. The number of maternal cells ranged from 2–4 maternal cells per biopsy slide. Neither NH specimen showed evidence of MM. In addition, immunohistochemical stains confirmed evidence of MM. Using PCR, a range of 1–142 copies of maternal DNA per 25,000 copies of patients DNA was found. CONCLUSIONS: Maternal microchimerism is present in the livers of patients with BA and may contribute to the pathogenesis of BA

    Whole-genome fingerprint of the DNA methylome during human B cell differentiation

    Get PDF
    We analyzed the DNA methylome of ten subpopulations spanning the entire B cell differentiation program by whole-genome bisulfite sequencing and high-density microarrays. We observed that non-CpG methylation disappeared upon B cell commitment, whereas CpG methylation changed extensively during B cell maturation, showing an accumulative pattern and affecting around 30% of all measured CpG sites. Early differentiation stages mainly displayed enhancer demethylation, which was associated with upregulation of key B cell transcription factors and affected multiple genes involved in B cell biology. Late differentiation stages, in contrast, showed extensive demethylation of heterochromatin and methylation gain at Polycomb-repressed areas, and genes with apparent functional impact in B cells were not affected. This signature, which has previously been linked to aging and cancer, was particularly widespread in mature cells with an extended lifespan. Comparing B cell neoplasms with their normal counterparts, we determined that they frequently acquire methylation changes in regions already undergoing dynamic methylation during normal B cell differentiation
    corecore