29 research outputs found

    A Primary Prevention Clinical Risk Score Model for Patients With Brugada Syndrome (BRUGADA-RISK)

    Get PDF
    OBJECTIVES: The goal of this study was to develop a risk score model for patients with Brugada syndrome (BrS). BACKGROUND: Risk stratification in BrS is a significant challenge due to the low event rates and conflicting evidence. METHODS: A multicenter international cohort of patients with BrS and no previous cardiac arrest was used to evaluate the role of 16 proposed clinical or electrocardiogram (ECG) markers in predicting ventricular arrhythmias (VAs)/sudden cardiac death (SCD) during follow-up. Predictive markers were incorporated into a risk score model, and this model was validated by using out-of-sample cross-validation. RESULTS: A total of 1,110 patients with BrS from 16 centers in 8 countries were included (mean age 51.8 ± 13.6 years; 71.8% male). Median follow-up was 5.33 years; 114 patients had VA/SCD (10.3%) with an annual event rate of 1.5%. Of the 16 proposed risk factors, probable arrhythmia-related syncope (hazard ratio [HR]: 3.71; p < 0.001), spontaneous type 1 ECG (HR: 3.80; p < 0.001), early repolarization (HR: 3.42; p < 0.001), and a type 1 Brugada ECG pattern in peripheral leads (HR: 2.33; p < 0.001) were associated with a higher risk of VA/SCD. A risk score model incorporating these factors revealed a sensitivity of 71.2% (95% confidence interval: 61.5% to 84.6%) and a specificity of 80.2% (95% confidence interval: 75.7% to 82.3%) in predicting VA/SCD at 5 years. Calibration plots showed a mean prediction error of 1.2%. The model was effectively validated by using out-of-sample cross-validation according to country. CONCLUSIONS: This multicenter study identified 4 risk factors for VA/SCD in a primary prevention BrS population. A risk score model was generated to quantify risk of VA/SCD in BrS and inform implantable cardioverter-defibrillator prescription

    A Primary Prevention Clinical Risk Score Model for Patients With Brugada Syndrome (BRUGADA-RISK).

    Get PDF
    OBJECTIVES: The goal of this study was to develop a risk score model for patients with Brugada syndrome (BrS). BACKGROUND: Risk stratification in BrS is a significant challenge due to the low event rates and conflicting evidence. METHODS: A multicenter international cohort of patients with BrS and no previous cardiac arrest was used to evaluate the role of 16 proposed clinical or electrocardiogram (ECG) markers in predicting ventricular arrhythmias (VAs)/sudden cardiac death (SCD) during follow-up. Predictive markers were incorporated into a risk score model, and this model was validated by using out-of-sample cross-validation. RESULTS: A total of 1,110 patients with BrS from 16 centers in 8 countries were included (mean age 51.8 ± 13.6 years; 71.8% male). Median follow-up was 5.33 years; 114 patients had VA/SCD (10.3%) with an annual event rate of 1.5%. Of the 16 proposed risk factors, probable arrhythmia-related syncope (hazard ratio [HR]: 3.71; p < 0.001), spontaneous type 1 ECG (HR: 3.80; p < 0.001), early repolarization (HR: 3.42; p < 0.001), and a type 1 Brugada ECG pattern in peripheral leads (HR: 2.33; p < 0.001) were associated with a higher risk of VA/SCD. A risk score model incorporating these factors revealed a sensitivity of 71.2% (95% confidence interval: 61.5% to 84.6%) and a specificity of 80.2% (95% confidence interval: 75.7% to 82.3%) in predicting VA/SCD at 5 years. Calibration plots showed a mean prediction error of 1.2%. The model was effectively validated by using out-of-sample cross-validation according to country. CONCLUSIONS: This multicenter study identified 4 risk factors for VA/SCD in a primary prevention BrS population. A risk score model was generated to quantify risk of VA/SCD in BrS and inform implantable cardioverter-defibrillator prescription

    Cardiac Rhythm Monitoring Using Wearables for Clinical Guidance before and after Catheter Ablation

    No full text
    Mobile health technologies are gaining importance in clinical decision-making. With the capability to monitor the patient&rsquo;s heart rhythm, they have the potential to reduce the time to confirm a diagnosis and therefore are useful in patients eligible for screening of atrial fibrillation as well as in patients with symptoms without documented symptom rhythm correlation. Such is crucial to enable an adequate arrhythmia management including the possibility of a catheter ablation. After ablation, wearables can help to search for recurrences, in symptomatic as well as in asymptomatic patients. Furthermore, those devices can be used to search for concomitant arrhythmias and have the potential to help improving the short- and long-term patient management. The type of wearable as well as the adequate technology has to be chosen carefully for every situation and every individual patient, keeping different aspects in mind. This review aims to describe and to elaborate a potential workflow for the role of wearables for cardiac rhythm monitoring regarding detection and management of arrhythmias before and after cardiac electrophysiological procedures

    Acute echocardiographic and electrocardiographic effects of triggered left ventricular pacing

    No full text
    Cardiac resynchronization therapy (CRT) is an essential pillar in the therapy of heart failure patients with reduced ejection fraction (HFrEF) presenting with broad left bundle branch block (LBBB) or pacemaker dependency. To achieve beneficial effects, CRT requires high bi-ventricular (BiV) pacing rates. Therefore, device-manufacturers designed pacing algorithms which maintain high BiV pacing rates by a left ventricular (LV) pacing stimulus immediately following a right ventricular sensed beat. However, data on clinical impact of these algorithms are sparse. We studied 17 patients implanted with a CRT device providing triggered left ventricular pacing (tLVp) in case of atrioventricular nodal conduction. Assessment of LV dyssynchrony was performed using echocardiographic and electrocardiographic examination while CRT-devices were set to three different settings: 1. Optimized bi-ventricular-stimulation (BiV); 2. Physiological AV nodal conduction (tLVp-off); 3. Physiological AV nodal conduction and tLVp-algorithm turned on (tLVp-on). QRS duration increased when the CRT-device was set to tLVp-off compared to BiV-Stim, while QRS duration was comparable to BiV-Stim with the tLVp-on setting. Echocardiographic analysis revealed higher dyssynchrony during tLVp-off compared to BiV-Stim. TLVp-on did not improve LV dyssynchrony compared to tLVp-off. QRS duration significantly decreased using tLVp-algorithms compared to physiological AV nodal conduction. However, echocardiographic examination could not show functional benefit from tLVp-algorithms, suggesting that these algorithms are inferior to regular biventricular pacing regarding cardiac resynchronization. Therefore, medical treatment and ablation procedures should be preferred, when biventricular pacing rates have to be increased. TLVp-algorithms can be used in addition to these treatment options

    Changes in eligibility for a subcutaneous cardioverter-defibrillator after implantation of a left ventricular assist device-A prospective analysis.

    No full text
    BackgroundThe number of left ventricular assist devices (LVADs) implanted in patients with end-stage heart failure is increasing. In this patient cohort, subcutaneous implantable cardioverter defibrillators (S-ICDs) could be a promising alternative to transvenous ICDs due to lower infection rates and avoidance of venous access. However, eligibility for the S-ICD depends on ECG features that may be influenced by an LVAD. The aim of the present study was a prospective evaluation of S-ICD eligibility before and after LVAD implantation.MethodsThe study recruited all patients presenting at Hannover Medical School for LVAD implantation between 2016 and 2020. S-ICD eligibility was evaluated using the ECG-based and the device-based S-ICD screening test before and after LVAD implantation.ResultsTwenty-two patients (57.3 ± 8.7 years of age, 95.5% male) were included in the analysis. The most common underlying diseases were dilated cardiomyopathy (n = 16, 72.7%) and ischemic cardiomyopathy (n = 5, 22.7%). Before LVAD implantation 16 patients were found eligible for the S-ICD according to both screening tests (72.7%), but only 7 patients were eligible after LVAD, 31.8%; p = 0.05). Oversensing due to electromagnetic interference was observed in 6 patients (66.6%) found ineligible for S-ICD after LVAD implantation. A lower S wave amplitude in leads I (p = 0.009), II (p = 0.006) and aVF (p = 0.006) before LVAD implantation was associated with higher rate of S-ICD ineligibility after LVAD implantation.ConclusionLVAD implantation can impair S-ICD eligibility. Patients with lower S wave amplitude in leads I, II and aVF were more likely to be ineligible for S-ICD implantation after LVAD implantation. Thus, S-ICD therapy should be carefully considered in patients who are candidates for LVAD therapy

    Feasibility and First Results of Heart Failure Monitoring Using the Wearable Cardioverter–Defibrillator in Newly Diagnosed Heart Failure with Reduced Ejection Fraction

    No full text
    The wearable cardioverter–defibrillator (WCD) is used in patients with newly diagnosed heart failure and reduced ejection fraction (HFrEF). In addition to arrhythmic events, the WCD provides near-continuous telemetric heart failure monitoring. The purpose of this study was to evaluate the clinical relevance of additionally recorded parameters, such as heart rate or step count. We included patients with newly diagnosed HFrEF prescribed with a WCD. Via the WCD, step count and heart rate were acquired, and an approximate for heart rate variability (HRV5) was calculated. Multivariate analysis was performed to analyze predictors for an improvement in left ventricular ejection fraction (LVEF). Two hundred and seventy-six patients (31.9% female) were included. Mean LVEF was 25.3 ± 8.5%. Between the first and last seven days of usage, median heart rate fell significantly (p p 23 ms was an independent predictor for LVEF improvement of ≥10% between prescription and 3-month follow-up. Patients with newly diagnosed HFrEF showed significant changes in heart rate, step count, and HRV5 between the beginning and end of WCD prescription time. HRV5 was an independent predictor for LVEF improvement and could serve as an early indicator of treatment response

    Delayed Improvement of Left Ventricular Function in Newly Diagnosed Heart Failure Depends on Etiology&mdash;A PROLONG-II Substudy

    No full text
    In patients with newly diagnosed heart failure with reduced ejection fraction (HFrEF), three months of optimal therapy are recommended before considering a primary preventive implantable cardioverter-defibrillator (ICD). It is unclear which patients benefit from a prolonged waiting period under protection of the wearable cardioverter-defibrillator (WCD) to avoid unnecessary ICD implantations. This study included all patients receiving a WCD for newly diagnosed HFrEF (n = 353) at our center between 2012 and 2017. Median follow-up was 2.7 years. From baseline until three months, LVEF improved in patients with all peripartum cardiomyopathy (PPCM), myocarditis, dilated cardiomyopathy (DCM), or ischemic cardiomyopathy (ICM). Beyond this time, LVEF improved in PPCM and DCM only (10 &plusmn; 8% and 10 &plusmn; 12%, respectively), whereas patients with ICM showed no further improvement. The patients with newly diagnosed HFrEF were compared to 29 patients with a distinct WCD indication, which is an explantation of an infected ICD. This latter group had a higher incidence of WCD shocks and poorer overall survival. All-cause mortality should be considered when deciding on WCD prescription. In patients with newly diagnosed HFrEF, the potential for delayed LVEF recovery should be considered when timing ICD implantation, especially in patients with PPCM and DCM

    Fig 5 -

    No full text
    (A) QRS width; (B) Max. LV delay depending on the amount of QRS shortening by tLVp with regard to intrinsic QRS complex (BiV–biventricular pacing, LV—left ventricle, tLVp—triggered left ventricular pacing); n = 9 for ≤20ms, n = 8 for >20ms.</p
    corecore