3,018 research outputs found
Hartmann's Procedure or Primary Anastomosis?
Perforation following acute diverticulitis is a typical scenario during the first attack. Different classification systems exist to classify acute perforated diverticulitis. While the Hinchey classification, which is based on intraoperative findings, is internationally best known, the German Hansen-Stock classification which is based on CT scan is widely accepted within Germany. When surgery is necessary, sigmoid colectomy is the standard of care. An important question is whether patients should receive primary anastomosis or a Hartmann procedure subsequently. A priori there are several arguments for both procedures. Hartmann's operation is extremely safe and, therefore, represents the best option in severely ill patients and/or extensive peritonitis. However, this operation carries a high risk of stoma nonreversal, or, when reversal is attempted, a high risk in terms of morbidity and mortality. In contrast, primary anastomosis with or without loop ileostoma is a slightly more lengthy procedure as normally the splenic flexure needs to be mobilized and construction of the anastomosis may consume more time than the Hartmann operation. The big advantage of primary anastomosis, however, is that there is no need for the potentially risky stoma reversal operation. The most interesting question is when to do the Hartmann operation or primary anastomosis. Several comparative case series were published showing that primary anastomosis is feasible in many patients. However, no randomized trial is available to date. It is of note, that all non-randomized case series are biased, i.e. that patients in better condition received anastomosis and those with severe peritonitis underwent Hartmann's operation. This bias is undoubtedly likely to be present, even if not obvious, in the published papers! Our own data suggest that this decision should not be based on the extent of peritonitis but rather on patient condition and comorbidity. In conclusion, sigmoid colectomy and primary anastomosis is feasible and safe in many patients who need surgery for perforated diverticulitis, particularly when combined with loop ileostomy. Based on our own published analysis, however, we recommend performing Hartmann's operation in severely ill patients who carry substantial comorbidity, while the extent of peritonitis appears not to be of predominant importance. Copyright (C) 2012 S. Karger AG, Base
Machine Learning Predictions Electronic Couplings for Charge Transport Calculations of P3HT
The purpose of this work is to lower the computational cost of predicting charge mobilities in organic semiconductors, which will benefit the screening of candidates for inexpensive solar power generation. We characterize efforts to minimize the number of expensive quantum chemical calculations we perform by training machines to predict electronic couplings between monomers of poly-(3-hexylthiophene). We test five machine learning techniques and identify random forests as the most accurate, information-dense, and easy-to-implement approach for this problem, achieving mean-absolute-error of 0.02 [× 1.6 × 10−19 J], R2 = 0.986, predicting electronic couplings 390 times faster than quantum chemical calculations, and informing zero-field hole mobilities within 5% of prior work. We discuss strategies for identifying small effective training sets. In sum, we demonstrate an example problem where machine learning techniques provide an effective reduction in computational costs while helping to understand underlying structure–property relationships in a materials system with broad applicability
DHODH modulates transcriptional elongation in the neural crest and melanoma
Melanoma is a tumour of transformed melanocytes, which are originally derived from the embryonic neural crest. It is unknown to what extent the programs that regulate neural crest development interact with mutations in the BRAF oncogene, which is the most commonly mutated gene in human melanoma1. We have used zebrafish embryos to identify the initiating transcriptional events that occur on activation of human BRAF(V600E) (which encodes an amino acid substitution mutant of BRAF) in the neural crest lineage. Zebrafish embryos that are transgenic for mitfa:BRAF(V600E) and lack p53 (also known as tp53) have a gene signature that is enriched for markers of multipotent neural crest cells, and neural crest progenitors from these embryos fail to terminally differentiate. To determine whether these early transcriptional events are important for melanoma pathogenesis, we performed a chemical genetic screen to identify small-molecule suppressors of the neural crest lineage, which were then tested for their effects on melanoma. One class of compound, inhibitors of dihydroorotate dehydrogenase (DHODH), for example leflunomide, led to an almost complete abrogation of neural crest development in zebrafish and to a reduction in the self-renewal of mammalian neural crest stem cells. Leflunomide exerts these effects by inhibiting the transcriptional elongation of genes that are required for neural crest development and melanoma growth. When used alone or in combination with a specific inhibitor of the BRAF(V600E) oncogene, DHODH inhibition led to a marked decrease in melanoma growth both in vitro and in mouse xenograft studies. Taken together, these studies highlight developmental pathways in neural crest cells that have a direct bearing on melanoma formation
Blow-up profile of rotating 2D focusing Bose gases
We consider the Gross-Pitaevskii equation describing an attractive Bose gas
trapped to a quasi 2D layer by means of a purely harmonic potential, and which
rotates at a fixed speed of rotation . First we study the behavior of
the ground state when the coupling constant approaches , the critical
strength of the cubic nonlinearity for the focusing nonlinear Schr{\"o}dinger
equation. We prove that blow-up always happens at the center of the trap, with
the blow-up profile given by the Gagliardo-Nirenberg solution. In particular,
the blow-up scenario is independent of , to leading order. This
generalizes results obtained by Guo and Seiringer (Lett. Math. Phys., 2014,
vol. 104, p. 141--156) in the non-rotating case. In a second part we consider
the many-particle Hamiltonian for bosons, interacting with a potential
rescaled in the mean-field manner w\int\_{\mathbb{R}^2} w(x) dx = 1\beta < 1/2a\_N \to a\_*N \to \infty$
Non-Global Logarithms in Filtered Jet Algorithms
We analytically and numerically study the effect of perturbative gluons
emission on the "Filtering analysis", which is part of a subjet analysis
procedure proposed two years ago to possibly identify a low-mass Higgs boson
decaying into b\bar{b} at the LHC. This leads us to examine the non-global
structure of the resulting perturbative series in the leading single-log
large-N_c approximation, including all-orders numerical results, simple
analytical approximations to them and comments on the structure of their series
expansion. We then use these results to semi-analytically optimize the
parameters of the Filtering analysis so as to suppress as much as possible the
effect of underlying event and pile-up on the Higgs mass peak reconstruction
while keeping the major part of the perturbative radiation from the b\bar{b}
dipole.Comment: 47 pages, 25 figures, 1 figure and a few comments added, version
accepted for publication in JHE
TOM40 Mediates Mitochondrial Dysfunction Induced by α-Synuclein Accumulation in Parkinson's Disease.
Alpha-synuclein (α-Syn) accumulation/aggregation and mitochondrial dysfunction play prominent roles in the pathology of Parkinson's disease. We have previously shown that postmortem human dopaminergic neurons from PD brains accumulate high levels of mitochondrial DNA (mtDNA) deletions. We now addressed the question, whether alterations in a component of the mitochondrial import machinery -TOM40- might contribute to the mitochondrial dysfunction and damage in PD. For this purpose, we studied levels of TOM40, mtDNA deletions, oxidative damage, energy production, and complexes of the respiratory chain in brain homogenates as well as in single neurons, using laser-capture-microdissection in transgenic mice overexpressing human wildtype α-Syn. Additionally, we used lentivirus-mediated stereotactic delivery of a component of this import machinery into mouse brain as a novel therapeutic strategy. We report here that TOM40 is significantly reduced in the brain of PD patients and in α-Syn transgenic mice. TOM40 deficits were associated with increased mtDNA deletions and oxidative DNA damage, and with decreased energy production and altered levels of complex I proteins in α-Syn transgenic mice. Lentiviral-mediated overexpression of Tom40 in α-Syn-transgenic mice brains ameliorated energy deficits as well as oxidative burden. Our results suggest that alterations in the mitochondrial protein transport machinery might contribute to mitochondrial impairment in α-Synucleinopathies
Worldwide Incidence of Malaria in 2009: Estimates, Time Trends, and a Critique of Methods
Richard Cibulskis and colleagues present estimates of the worldwide incidence of malaria in 2009, together with a critique of different estimation methods, including those based on risk maps constructed from surveys of parasite prevalence, and those based on routine case reports compiled by health ministries
Twist and snai1 expression in pharyngeal squamous cell carcinoma stroma is related to cancer progression
<p>Abstract</p> <p>Background</p> <p>Epithelial-mesenchymal transition (EMT) is a crucial process in tumorigenesis since tumor cells attain fibroblast-like features enabling them to invade to surrounding tissue. Two transcription factors, <it>TWIST </it>and <it>SNAI1</it>, are fundamental in regulating EMT.</p> <p>Methods</p> <p>Immunohistochemistry was used to study the expression of TWIST and SNAI1 in 109 pharyngeal squamous cell carcinomas.</p> <p>Results</p> <p>Tumors with intense stromal staining of TWIST relapsed more frequently (p = 0.04). Tumors with both positive TWIST and SNAI1 immunoreactivity in the stroma were at least Stage II (p = 0.05) and located more often in hypopharynx (p = 0.035). Tumors with negative immunostaining of TWIST and SNAI1 in the stromal compartment were smaller (T1-2) (p = 0.008), less advanced (SI-II) (p = 0.031) and located more often in the oropharynx (p = 0.007). Patients with negative SNAI1 and TWIST immunostaining in tumor stroma had a better 5-year disease-specific and overall survival (p = 0.037 and p = 0.014 respectively).</p> <p>Conclusion</p> <p>TWIST and SNAI1 expression in stromal cells is associated with clinical and histopathological characteristics that indicate progressive disease. Negative expression of these EMT-promoting transcription factors predicts a better outcome.</p
Upper atmospheres and ionospheres of planets and satellites
The upper atmospheres of the planets and their satellites are more directly
exposed to sunlight and solar wind particles than the surface or the deeper
atmospheric layers. At the altitudes where the associated energy is deposited,
the atmospheres may become ionized and are referred to as ionospheres. The
details of the photon and particle interactions with the upper atmosphere
depend strongly on whether the object has anintrinsic magnetic field that may
channel the precipitating particles into the atmosphere or drive the
atmospheric gas out to space. Important implications of these interactions
include atmospheric loss over diverse timescales, photochemistry and the
formation of aerosols, which affect the evolution, composition and remote
sensing of the planets (satellites). The upper atmosphere connects the planet
(satellite) bulk composition to the near-planet (-satellite) environment.
Understanding the relevant physics and chemistry provides insight to the past
and future conditions of these objects, which is critical for understanding
their evolution. This chapter introduces the basic concepts of upper
atmospheres and ionospheres in our solar system, and discusses aspects of their
neutral and ion composition, wind dynamics and energy budget. This knowledge is
key to putting in context the observations of upper atmospheres and haze on
exoplanets, and to devise a theory that explains exoplanet demographics.Comment: Invited Revie
Pattern Spectra from Different Component Trees for Estimating Soil Size Distribution
We study the pattern spectra in context of soil structure analysis. Good soil structure is vital for sustainable crop growth. Accurate and fast measuring methods can contribute greatly to soil management decisions. However, the current in-field approaches contain a degree of subjectivity, while obtaining quantifiable results through laboratory techniques typically involves sieving the soil which is labour- and time-intensive. We aim to replace this physical sieving process through image analysis, and investigate the effectiveness of pattern spectra to capture the size distribution of the soil aggregates. We calculate the pattern spectra from partitioning hierarchies in addition to the traditional max-tree. The study is posed as an image retrieval problem, and confirms the ability of pattern spectra and suitability of different partitioning trees to re-identify soil samples in different arrangements and scales
- …