21 research outputs found

    Bose-Einstein Condensation Temperature of Homogenous Weakly Interacting Bose Gas in Variational Perturbation Theory Through Six Loops

    Full text link
    We compute the shift of the transition temperature for a homogenous weakly interacting Bose gas in leading order in the scattering length a for given particle density n. Using variational perturbation theory through six loops in a classical three-dimensional scalar field theory, we obtain Delta T_c/T_c = 1.25+/-0.13 a n^(1/3), in agreement with recent Monte-Carlo results.Comment: 4 pages; omega' corrected: final result changes slightly to 1.25+/-0.13; references added; several minor change

    S-matrix approach to quantum gases in the unitary limit II: the three-dimensional case

    Full text link
    A new analytic treatment of three-dimensional homogeneous Bose and Fermi gases in the unitary limit of negative infinite scattering length is presented, based on the S-matrix approach to statistical mechanics we recently developed. The unitary limit occurs at a fixed point of the renormalization group with dynamical exponent z=2 where the S-matrix equals -1. For fermions we find T_c /T_F is approximately 0.1. For bosons we present evidence that the gas does not collapse, but rather has a critical point that is a strongly interacting form of Bose-Einstein condensation. This bosonic critical point occurs at n lambda^3 approximately 1.3 where n is the density and lambda the thermal wavelength, which is lower than the ideal gas value of 2.61.Comment: 26 pages, 16 figure

    Large Scale Rapidity Correlations in Heavy Ion Collisions

    Get PDF
    We discuss particle production mechanisms for heavy ion collisions. We present an argument demonstrating how the fluctuations of the number of produced particles in a series of classical emissions can account for KNO scaling. We predict rapidity correlations in the particle production in the event by event analysis of heavy ion collisions on the rapidity scales of the order of one over the strong coupling constant.Comment: REVTeX, 13 pages, 3 figure

    From colored glass condensate to gluon plasma: equilibration in high energy heavy ion collisions

    Get PDF
    The initial distribution of gluons at the very early times after a high energy heavy ion collision is described by the bulk scale QsQ_s of gluon saturation in the nuclear wavefunction. The subsequent evolution of the system towards kinetic equilibrium is described by a non-linear Landau equation for the single particle distributions \cite{Mueller1,Mueller2}. In this paper, we solve this equation numerically for the idealized initial conditions proposed by Mueller, and study the evolution of the system to equilibrium. We discuss the sensitivity of our results on the dynamical screening of collinear divergences. In a particular model of dynamical screening, the convergence to the hydrodynamic limit is seen to be rapid relative to hydrodynamic time scales. The equilibration time, the initial temperature, and the chemical potential are shown to have a strong functional dependence on the initial gluon saturation scale QsQ_s.Comment: 34 pages, 10 figure

    Vortex lattice of a Bose-Einstein Condensate in a rotating anisotropic trap

    Get PDF
    We study the vortex lattices in a Bose-Einstein Condensate in a rotating anisotropic harmonic trap. We first investigate the single particle wavefunctions obtained by the exact solution of the problem and give simple expressions for these wavefunctions in the small anisotropy limit. Depending on the strength of the interactions, a few or a large number of vortices can be formed. In the limit of many vortices, we calculate the density profile of the cloud and show that the vortex lattice stays triangular. We also find that the vortex lattice planes align themselves with the weak axis of the external potential. For a small number of vortices, we numerically solve the Gross-Pitaevskii equation and find vortex configurations that are very different from the vortex configurations in an axisymmetric rotating trap.Comment: 15 pages,4 figure

    What Have We Learned from RHIC?

    Full text link
    In this talk, I present what I believe we have learned from the recent RHIC heavy ion experiments. The goal of these experiments is to make and study matter at very high energy densities, greater than an order of magnitude larger than that of nuclear matter. Have we made such matter? What have we learned about the properties of this matter? What do we hope and expect to learn in the future?Comment: 34 figure

    Blow-up profile of rotating 2D focusing Bose gases

    Full text link
    We consider the Gross-Pitaevskii equation describing an attractive Bose gas trapped to a quasi 2D layer by means of a purely harmonic potential, and which rotates at a fixed speed of rotation Ω\Omega. First we study the behavior of the ground state when the coupling constant approaches a_a\_* , the critical strength of the cubic nonlinearity for the focusing nonlinear Schr{\"o}dinger equation. We prove that blow-up always happens at the center of the trap, with the blow-up profile given by the Gagliardo-Nirenberg solution. In particular, the blow-up scenario is independent of Ω\Omega, to leading order. This generalizes results obtained by Guo and Seiringer (Lett. Math. Phys., 2014, vol. 104, p. 141--156) in the non-rotating case. In a second part we consider the many-particle Hamiltonian for NN bosons, interacting with a potential rescaled in the mean-field manner a_NN2β1w(Nβx),with--a\_N N^{2\beta--1} w(N^{\beta} x), with wapositivefunctionsuchthat a positive function such that \int\_{\mathbb{R}^2} w(x) dx = 1.Assumingthat. Assuming that \beta < 1/2andthat and that a\_N \to a\_*sufficientlyslowly,weprovethatthemanybodysystemisfullycondensedontheGrossPitaevskiigroundstateinthelimit sufficiently slowly, we prove that the many-body system is fully condensed on the Gross-Pitaevskii ground state in the limit N \to \infty$

    Transport Properties of the Quark-Gluon Plasma -- A Lattice QCD Perspective

    Full text link
    Transport properties of a thermal medium determine how its conserved charge densities (for instance the electric charge, energy or momentum) evolve as a function of time and eventually relax back to their equilibrium values. Here the transport properties of the quark-gluon plasma are reviewed from a theoretical perspective. The latter play a key role in the description of heavy-ion collisions, and are an important ingredient in constraining particle production processes in the early universe. We place particular emphasis on lattice QCD calculations of conserved current correlators. These Euclidean correlators are related by an integral transform to spectral functions, whose small-frequency form determines the transport properties via Kubo formulae. The universal hydrodynamic predictions for the small-frequency pole structure of spectral functions are summarized. The viability of a quasiparticle description implies the presence of additional characteristic features in the spectral functions. These features are in stark contrast with the functional form that is found in strongly coupled plasmas via the gauge/gravity duality. A central goal is therefore to determine which of these dynamical regimes the quark-gluon plasma is qualitatively closer to as a function of temperature. We review the analysis of lattice correlators in relation to transport properties, and tentatively estimate what computational effort is required to make decisive progress in this field.Comment: 54 pages, 37 figures, review written for EPJA and APPN; one parag. added end of section 3.4, and one at the end of section 3.2.2; some Refs. added, and some other minor change

    Attentional Performance in Children and Adolescents with Tic Disorder and Co-Occurring Attention-Deficit/Hyperactivity Disorder: New Insights from a 2 × 2 Factorial Design Study

    Get PDF
    The aim of the present study was to investigate the effect of both tic disorder (TD) and attention-deficit/hyperactivity disorder (ADHD) on attentional functions. N = 96 children and adolescents participated in the study, including n = 21 subjects with TD, n = 23 subjects with ADHD, n = 25 subjects with TD+ADHD, and n = 27 controls. Attentional performance was tested based on four computerized attention tasks (sustained attention, divided attention, go/nogo and set shifting). The effect of TD as well as ADHD on attentional performance was tested using a 2 × 2 factorial approach. A diagnosis of TD had no negative impact on attentional functions but was associated with improved performance in the set shifting task. By contrast, regardless of a diagnosis of TD, subjects with ADHD were found to perform worse in the sustained attention, divided attention and go/nogo task. No interaction effect between the factors TD and ADHD was revealed for any of the attention measures. Our results add to findings from other areas of research, showing that in subjects with TD and ADHD, ADHD psychopathology is often the main source of impairment, whereas a diagnosis of TD has little or no impact on neuropsychological performance in most cases and even seems to be associated with adaptive mechanisms
    corecore