10,813 research outputs found

    Small optic suspensions for Advanced LIGO input optics and other precision optical experiments

    Get PDF
    We report on the design and performance of small optic suspensions developed to suppress seismic motion of out-of-cavity optics in the Input Optics subsystem of the Advanced LIGO interferometric gravitational wave detector. These compact single stage suspensions provide isolation in all six degrees of freedom of the optic, local sensing and actuation in three of them, and passive damping for the other three

    Deep inelastic events containing a forward photon as a probe of small xx dynamics

    Get PDF
    We calculate the rate of producing deep inelastic events containing an energetic isolated forward photon at HERA. We quantify the enhancement arising from the leading log⁥1/x\log 1/x gluon emissions with a view to using such events to identify the underlying dynamics.Comment: 11 pages, Latex, 7 ps figure

    Characterization of thermal effects in the Enhanced LIGO Input Optics

    Get PDF
    We present the design and performance of the LIGO Input Optics subsystem as implemented for the sixth science run of the LIGO interferometers. The Initial LIGO Input Optics experienced thermal side effects when operating with 7 W input power. We designed, built, and implemented improved versions of the Input Optics for Enhanced LIGO, an incremental upgrade to the Initial LIGO interferometers, designed to run with 30 W input power. At four times the power of Initial LIGO, the Enhanced LIGO Input Optics demonstrated improved performance including better optical isolation, less thermal drift, minimal thermal lensing and higher optical efficiency. The success of the Input Optics design fosters confidence for its ability to perform well in Advanced LIGO

    A Survey for Massive Giant Planets in Debris Disks with Evacuated Inner Cavities

    Get PDF
    The commonality of collisionally replenished debris around main sequence stars suggests that minor bodies are frequent around Sun-like stars. Whether or not debris disks in general are accompanied by planets is yet unknown, but debris disks with large inner cavities - perhaps dynamically cleared - are considered to be prime candidates for hosting large-separation massive giant planets. We present here a high-contrast VLT/NACO angular differential imaging survey for eight such cold debris disks. We investigated the presence of massive giant planets in the range of orbital radii where the inner edge of the dust debris is expected. Our observations are sensitive to planets and brown dwarfs with masses >3 to 7 Jupiter mass, depending on the age and distance of the target star. Our observations did not identify any planet candidates. We compare the derived planet mass upper limits to the minimum planet mass required to dynamically clear the inner disks. While we cannot exclude that single giant planets are responsible for clearing out the inner debris disks, our observations constrain the parameter space available for such planets. The non-detection of massive planets in these evacuated debris disks further reinforces the notion that the giant planet population is confined to the inner disk (<15 AU).Comment: Accepted for publication in Ap

    Parity Violation in gamma proton Compton Scattering

    Full text link
    A measurement of parity-violating spin-dependent gamma proton Compton scattering will provide a theoretically clean determination of the parity-violating pion-nucleon coupling constant hπNN(1)h_{\pi NN}^{(1)}. We calculate the leading parity-violating amplitude arising from one-loop pion graphs in chiral perturbation theory. An asymmetry of ~5 10^{-8} is estimated for Compton scattering of 100 MeV photons.Comment: 6 pages, 1 figure, latex. Reference adde

    Theoretical issues of small xx physics

    Full text link
    The perturbative QCD predictions concerning deep inelastic scattering at low xx are summarized. The theoretical framework based on the leading log 1/x1/x resummation and ktk_t factorization theorem is described and some recent developments concerning the BFKL equation and its generalization are discussed. The QCD expectations concerning the small xx behaviour of the spin dependent structure function g1(x,Q2)g_1(x,Q^2) are briefly summarized and the importance of the double logarithmic terms which sum contributions containing the leading powers of αsln2(1/x)\alpha_s ln^2(1/x) is emphasised. The role of studying final states in deep inelastic scattering for revealing the details of the underlying dynamics at low xx is pointed out and some dedicated measurements, like deep inelastic scattering accompanied by an energetic jet, the measurement of the transverse energy flow etc., are briefly discussed.Comment: 17 pages, LATEX, 7 uuencoded eps figures include

    Diffractive Leptoproduction of Vector Mesons in QCD

    Full text link
    We demonstrate that the distinctive features of the forward differential cross section of diffractive leptoproduction of a vector meson can be legitimately calculated in perturbative QCD in terms of the light-cone qqˉq \bar q wave function of the vector meson and the gluon distribution of the target. In particular, we calculate the Q2Q^2 and nuclear dependence of the diffractive leptoproduction of vector mesons and estimate the cross section. The production of longitudinally polarized vector mesons by longitudinally polarized virtual photons is predicted to be the dominant component, yielding a cross section behaving as Q−6Q^{-6}. The nuclear dependence of the diffractive cross sections, which follows from a factorization theorem in perturbative QCD, provides important tests of color transparency as well as constraints on the shadowing of the gluon structure functions and the longitudinal structure functions of nuclei.Comment: 32 pages, requires phyzzx.tex, figures can be obtained by sending preprint request to SLAC, minor clarifications and additional references incorporated in revised version, preprint SLAC-PUB-641

    Quark Orbital-Angular-Momentum Distribution in the Nucleon

    Get PDF
    We introduce gauge-invariant quark and gluon angular momentum distributions after making a generalization of the angular momentum density operators. From the quark angular momentum distribution, we define the gauge-invariant and leading-twist quark {\it orbital} angular momentum distribution Lq(x)L_q(x). The latter can be extracted from data on the polarized and unpolarized quark distributions and the off-forward distribution E(x)E(x) in the forward limit. We comment upon the evolution equations obeyed by this as well as other orbital distributions considered in the literature.Comment: 8 pages, latex, no figures, minor corrections mad

    Observable jets from the BFKL chain

    Full text link
    We derive a modified form of the BFKL equation which enables the structure of the gluon emissions to be studied in small xx deep inelastic scattering. The equation incorporates the resummation of the virtual and unresolved real gluon emissions. We solve the equation to calculate the number of small xx deep-inelastic events containing 0,1,2 ...resolved gluon jets, that is jets with transverse momenta qT>Όq_{T} > \mu. We study the jet decomposition for different choices of the jet resolution parameter Ό\mu.Comment: 14 pages, Latex, 13 ps figure

    New measurement of the scattering cross section of slow neutrons on liquid parahydrogen from neutron transmission

    Get PDF
    Liquid hydrogen is a dense Bose fluid whose equilibrium properties are both calculable from first principles using various theoretical approaches and of interest for the understanding of a wide range of questions in many body physics. Unfortunately, the pair correlation function g(r)g(r) inferred from neutron scattering measurements of the differential cross section dσdΩd\sigma \over d\Omega from different measurements reported in the literature are inconsistent. We have measured the energy dependence of the total cross section and the scattering cross section for slow neutrons with energies between 0.43~meV and 16.1~meV on liquid hydrogen at 15.6~K (which is dominated by the parahydrogen component) using neutron transmission measurements on the hydrogen target of the NPDGamma collaboration at the Spallation Neutron Source at Oak Ridge National Laboratory. The relationship between the neutron transmission measurement we perform and the total cross section is unambiguous, and the energy range accesses length scales where the pair correlation function is rapidly varying. At 1~meV our measurement is a factor of 3 below the data from previous work. We present evidence that these previous measurements of the hydrogen cross section, which assumed that the equilibrium value for the ratio of orthohydrogen and parahydrogen has been reached in the target liquid, were in fact contaminated with an extra non-equilibrium component of orthohydrogen. Liquid parahydrogen is also a widely-used neutron moderator medium, and an accurate knowledge of its slow neutron cross section is essential for the design and optimization of intense slow neutron sources. We describe our measurements and compare them with previous work.Comment: Edited for submission to Physical Review
    • 

    corecore