5 research outputs found

    A roof plate-dependent enhancer controls the expression of Homeodomain only protein in the developing cerebral cortex

    Get PDF
    AbstractThe smallest known homeodomain protein, Homeodomain only protein (Hop), was identified and described here as a temporally and spatially restricted gene in the neurogenic regions of the developing murine CNS including the cerebral cortex. Furthermore, an evolutionarily conserved 418 base pair upstream cis-regulatory DNA sequence was found to confine the Hop expression to the CNS of transgenic mice, but not to the heart which is the second major Hop expressing organ Chen, F., Kook, H., Milewski, R., Gitler, A.D., Lu, M.M., Li, J., Nazarian, R., Schnepp, R., Jen, K., Biben, C., Runke, G., Mackay, J.P., Novotny, J., Schwartz, R.J., Harvey, R.P., Mullins, M.C., Epstein, J.A., 2002. Hop is an unusual homeobox gene that modulates cardiac development. Cell 110, 713–723; Shin, C.H., Liu, Z.P., Passier, R., Zhang, C.L., Wang, D.Z., Harris, T.M., Yamagishi, H., Richardson, J.A., Childs, G., Olson, E.N., 2002. Modulation of cardiac growth and development by HOP, an unusual homeodomain protein. Cell 110, 725–735. The forebrain enhancer activity was successfully reproduced in vitro utilizing a combination of the electroporation and the organotypic brain culture method. Using this approach, the minimal requirement for the forebrain-specific enhancer sequence was delineated down to 200 base pairs. We further demonstrate that the Hop enhancer activity is inducible ectopically in a transgenic tissue by wild-type roof plate transplantation in vitro. Thus Hop is regulated in the forebrain by a so far unidentified paracrine signaling factor from the roof plate. Furthermore, the identified enhancer sequence provides an important tool for the targeted expression of transgenes in the medial cortex and the cortical hem

    Mechanismen der Entwicklung des zerebralen Kortex

    No full text

    Mechanismen der Entwicklung des zerebralen Kortex

    No full text

    Gene Therapy Restores Missing Cone-Mediated Vision in the CNGA3(-/-) Mouse Model of Achromatopsia

    No full text
    The absence of cyclic nucleotide-gated (CNG) channels in cone photoreceptor outer segments leads to achromatopsia, a severely disabling disease associated with the complete lack of cone photoreceptor function. In a common form, loss of the CNGA3 subunit disrupts visual transduction in cones and causes progressive degeneration. Here, we show that adeno-associated viral vector-mediated gene replacement therapy added the lacking sensual quality, cone-mediated vision, in the CNGA3 -/- mouse model of the human disease. The functional rescue of cone vision was assessed at different sites along the visual pathway. In particular, we show electrophysiologically that treated CNGA3 -/- mice became able to generate cone-mediated responses and to transfer these signals to bipolar and finally ganglion cells. In support, we found morphologically that expression of CNGA3 delayed cone cell death. Finally, we show in a behavioral test that treated mice acquired photopic vision suggesting that achromatopsia patients may as well benefit from gene replacement therapy. © 2012 Springer Science+Business Media, LLC
    corecore