27 research outputs found

    Enhancement of c-Myc degradation by BLM helicase leads to delayed tumor initiation

    Get PDF
    The spectrum of tumors that arise owing to the overexpression of c-Myc and loss of BLM is very similar. Hence, it was hypothesized that the presence of BLM negatively regulates c-Myc functions. By using multiple isogenic cell lines, we observed that the decrease of endogenous c-Myc levels that occurs in the presence of BLM is reversed when the cells are treated with proteasome inhibitors, indicating that BLM enhances c-Myc turnover. Whereas the N-terminal region of BLM interacts with c-Myc, the rest of the helicase interacts with the c-Myc E3 ligase Fbw7. The two BLM domains act as ‘clamp and/or adaptor’, enhancing the binding of c-Myc to Fbw7. BLM promotes Fbw7-dependent K48-linked c-Myc ubiquitylation and its subsequent degradation in a helicase-independent manner. A subset of BLM-regulated genes that are also targets of c-Myc were determined and validated at both RNA and protein levels. To obtain an in vivo validation of the effect of BLM on c-Myc-mediated tumor initiation, isogenic cells from colon cancer cells that either do or do not express BLM had been manipulated to block c-Myc expression in a controlled manner. By using these cell lines, the metastatic potential and rate of initiation of tumors in nude mice were determined. The presence of BLM decreases c-Myc-mediated invasiveness and delays tumor initiation in a mouse xenograft model. Consequently, in tumors that express BLM but not c-Myc, we observed a decreased ratio of proliferation to apoptosis together with a suppressed expression of the angiogenesis marker CD31. Hence, partly owing to its regulation of c-Myc stability, BLM acts as a ‘caretaker tumor suppressor’

    RECQL4 is essential for the transport of p53 to mitochondria in normal human cells in the absence of exogenous stress

    Get PDF
    Mutations in RECQL4 helicase are associated with Rothmund–Thomson syndrome (RTS). A subset of RTS patients is predisposed to cancer and is sensitive to DNA damaging agents. The enhanced sensitivity of cells from RTS patients correlates with the accumulation of transcriptionally active nuclear p53. We found that in untreated normal human cells these two nuclear proteins, p53 and RECQL4, instead colocalize in the mitochondrial nucleoids. RECQL4 accumulates in mitochondria in all phases of the cell cycle except S phase and physically interacts with p53 only in the absence of DNA damage. p53–RECQL4 binding leads to the masking of the nuclear localization signal of p53. The N-terminal 84 amino acids of RECQL4 contain a mitochondrial localization signal, which causes the localization of RECQL4–p53 complex to the mitochondria. RECQL4–p53 interaction is disrupted after stress, allowing p53 translocation to the nucleus. In untreated normal cells RECQL4 optimizes de novo replication of mtDNA, which is consequently decreased in fibroblasts from RTS patients. Wild-type RECQL4-complemented RTS cells show relocalization of both RECQL4 and p53 to the mitochondria, loss of p53 activation, restoration of de novo mtDNA replication and resistance to different types of DNA damage. In cells expressing Δ84 RECQL4, which cannot translocate to mitochondria, all the above functions are compromised. The recruitment of p53 to the sites of de novo mtDNA replication is also regulated by RECQL4. Thus these findings elucidate the mechanism by which p53 is regulated by RECQL4 in unstressed normal cells and also delineates the mitochondrial functions of the helicase

    Magnetic Proximity induced efficient charge-to-spin conversion in large area PtSe2_{2}/Ni80_{80}Fe20_{20} heterostructures

    Full text link
    As a topological Dirac semimetal with controllable spin-orbit coupling and conductivity, PtSe2_2, a transition-metal dichalcogenide, is a promising material for several applications from optoelectric to sensors. However, its potential for spintronics applications is yet to be explored. In this work, we demonstrate that PtSe2_{2}/Ni80_{80}Fe20_{20} heterostructure can generate a large damping-like current-induced spin-orbit torques (SOT), despite the absence of spin-splitting in bulk PtSe2_{2}. The efficiency of charge-to-spin conversion is found to be (0.1±0.02)(-0.1 \pm 0.02)~nm1^{-1} in PtSe2_{2}/Ni80_{80}Fe20_{20}, which is three times that of the control sample, Ni80_{80}Fe20_{20}/Pt. Our band structure calculations show that the SOT due to the PtSe2_2 arises from an unexpectedly large spin splitting in the interfacial region of PtSe2_2 introduced by the proximity magnetic field of the Ni80_{80}Fe20_{20} layer. Our results open up the possibilities of using large-area PtSe2_{2} for energy-efficient nanoscale devices by utilizing the proximity-induced SOT.Comment: 18 pages, 4 figure

    Composition of rain water in Agra city, a semi-arid area in India

    No full text
    49-55Rainwater samples were collected at St. John's crossing during the monsoon period of 2000. The cations (Ca2+, Mg2+,Na+, K+ and NH4+) and anions (F¯, Cl¯, HCO3¯, NO3¯ and SO42¯) along with pH were measured. The percentage contribution of soil components (Ca2+, Mg2+,Na+, K+) and NH4+ are observed to be higher than the acidic substances. The ratio of F¯/ Ca2+, Mg2+/ Ca2+, Na+/ Ca2+ and NO3¯/ Ca2+ in rainwater samples indicates that local soil plays a significant role in precipitation chemistry. Hence, soil dust is responsible for neutralization of wet deposition. The data were also subjected to factor analysis based on principal component analysis using the SPSS software. Factor analysis also indicates that the soil as well as dust emission is the major contributor to rainwater composition

    Resolving protein structure-function-binding site relationships from a binding site similarity network perspective

    No full text
    Functional annotation is seldom straightforward with complexities arising due to functional divergence in protein families or functional convergence between non-homologous protein families, leading to mis-annotations. An enzyme may contain multiple domains and not all domains may be involved in a given function, adding to the complexity in function annotation. To address this, we use binding site information from bound cognate ligands and catalytic residues, since it can help in resolving fold-function relationships at a finer level and with higher confidence. A comprehensive database of 2,020 fold-function-binding site relationships has been systematically generated. A network-based approach is employed to capture the complexity in these relationships, from which different types of associations are deciphered, that identify versatile protein folds performing diverse functions, same function associated with multiple folds and one-to-one relationships. Binding site similarity networks integrated with fold, function, and ligand similarity information are generated to understand the depth of these relationships. Apart from the observed continuity in the functional site space, network properties of these revealed versatile families with topologically different or dissimilar binding sites and structural families that perform very similar functions. As a case study, subtle changes in the active site of a set of evolutionarily related superfamilies are studied using these networks. Tracing of such similarities in evolutionarily related proteins provide clues into the transition and evolution of protein functions. Insights from this study will be helpful in accurate and reliable functional annotations of uncharacterized proteins, poly-pharmacology, and designing enzymes with new functional capabilities. Proteins 2017; 85:1319-1335. (c) 2017 Wiley Periodicals, Inc

    Resolving protein structure-function-binding site relationships from a binding site similarity network perspective

    No full text
    Functional annotation is seldom straightforward with complexities arising due to functional divergence in protein families or functional convergence between non-homologous protein families, leading to mis-annotations. An enzyme may contain multiple domains and not all domains may be involved in a given function, adding to the complexity in function annotation. To address this, we use binding site information from bound cognate ligands and catalytic residues, since it can help in resolving fold-function relationships at a finer level and with higher confidence. A comprehensive database of 2,020 fold-function-binding site relationships has been systematically generated. A network-based approach is employed to capture the complexity in these relationships, from which different types of associations are deciphered, that identify versatile protein folds performing diverse functions, same function associated with multiple folds and one-to-one relationships. Binding site similarity networks integrated with fold, function, and ligand similarity information are generated to understand the depth of these relationships. Apart from the observed continuity in the functional site space, network properties of these revealed versatile families with topologically different or dissimilar binding sites and structural families that perform very similar functions. As a case study, subtle changes in the active site of a set of evolutionarily related superfamilies are studied using these networks. Tracing of such similarities in evolutionarily related proteins provide clues into the transition and evolution of protein functions. Insights from this study will be helpful in accurate and reliable functional annotations of uncharacterized proteins, poly-pharmacology, and designing enzymes with new functional capabilities

    De-DUFing the DUFs: Deciphering distant evolutionary relationships of Domains of Unknown Function using sensitive homology detection methods

    Get PDF
    Background: In the post-genomic era where sequences are being determined at a rapid rate, we are highly reliant on computational methods for their tentative biochemical characterization. The Pfam database currently contains 3,786 families corresponding to ``Domains of Unknown Function'' (DUF) or ``Uncharacterized Protein Family'' (UPF), of which 3,087 families have no reported three-dimensional structure, constituting almost one-fourth of the known protein families in search for both structure and function. Results: We applied a `computational structural genomics' approach using five state-of-the-art remote similarity detection methods to detect the relationship between uncharacterized DUFs and domain families of known structures. The association with a structural domain family could serve as a start point in elucidating the function of a DUF. Amongst these five methods, searches in SCOP-NrichD database have been applied for the first time. Predictions were classified into high, medium and low-confidence based on the consensus of results from various approaches and also annotated with enzyme and Gene ontology terms. 614 uncharacterized DUFs could be associated with a known structural domain, of which high confidence predictions, involving at least four methods, were made for 54 families. These structure-function relationships for the 614 DUF families can be accessed on-line at http://proline.biochem.iisc.ernet.in/RHD_DUFS/. For potential enzymes in this set, we assessed their compatibility with the associated fold and performed detailed structural and functional annotation by examining alignments and extent of conservation of functional residues. Detailed discussion is provided for interesting assignments for DUF3050, DUF1636, DUF1572, DUF2092 and DUF659. Conclusions: This study provides insights into the structure and potential function for nearly 20 % of the DUFs. Use of different computational approaches enables us to reliably recognize distant relationships, especially when they converge to a common assignment because the methods are often complementary. We observe that while pointers to the structural domain can offer the right clues to the function of a protein, recognition of its precise functional role is still `non-trivial' with many DUF domains conserving only some of the critical residues. It is not clear whether these are functional vestiges or instances involving alternate substrates and interacting partners. Reviewers: This article was reviewed by Drs Eugene Koonin, Frank Eisenhaber and Srikrishna Subramanian

    Use of designed sequences in protein structure recognition

    No full text
    Background: Knowledge of the protein structure is a pre-requisite for improved understanding of molecular function. The gap in the sequence-structure space has increased in the post-genomic era. Grouping related protein sequences into families can aid in narrowing the gap. In the Pfam database, structure description is provided for part or full-length proteins of 7726 families. For the remaining 52% of the families, information on 3-D structure is not yet available. We use the computationally designed sequences that are intermediately related to two protein domain families, which are already known to share the same fold. These strategically designed sequences enable detection of distant relationships and here, we have employed them for the purpose of structure recognition of protein families of yet unknown structure. Results: We first measured the success rate of our approach using a dataset of protein families of known fold and achieved a success rate of 88%. Next, for 1392 families of yet unknown structure, we made structural assignments for part/full length of the proteins. Fold association for 423 domains of unknown function (DUFs) are provided as a step towards functional annotation. Conclusion: The results indicate that knowledge-based filling of gaps in protein sequence space is a lucrative approach for structure recognition. Such sequences assist in traversal through protein sequence space and effectively function as `linkers', where natural linkers between distant proteins are unavailable

    Seasonal variation of ambient air quality at selected sites in Agra city

    No full text
    127-133The seasonal variation in the ambient air concentration of SO2, NO2 and suspended particulate matter (SPM) in the urban atmosphere of Agra, India, during the year 1998-99, has been reported. The city was hypothetically divided into six monitoring zones. The maximum concentrations of SO2, NO2 and SPM were observed at Foundry Nagar and St. John's crossing. However, the minimum concentrations of SO2 and NO2 were observed at Dayalbagh, while the SPM concentration were minimum at Tajganj region. The value of SPM was always found higher than the prescribed limit of 100 μgm-3, while the values of SO2 and NO2 were found within the permissible limits, except sometimes in winter seasons, which may be due to thermal inversion. The value of monthly average pollutant standard index (PSI) has also been reported. The value varies from 127 to 497 in Agra

    Filling-in Void and Sparse Regions in Protein Sequence Space by Protein-Like Artificial Sequences Enables Remarkable Enhancement in Remote Homology Detection Capability

    No full text
    Protein functional annotation relies on the identification of accurate relationships, sequence divergence being a key factor. This is especially evident when distant protein relationships are demonstrated only with three-dimensional structures. To address this challenge, we describe a computational approach to purposefully bridge gaps between related protein families through directed design of protein-like ``linker'' sequences. For this, we represented SCOP domain families, integrated with sequence homologues, as multiple profiles and performed HMM-HMM alignments between related domain families. Where convincing alignments were achieved, we applied a roulette wheel-based method to design 3,611,010 protein-like sequences corresponding to 374 SCOP folds. To analyze their ability to link proteins in homology searches, we used 3024 queries to search two databases, one containing only natural sequences and another one additionally containing designed sequences. Our results showed that augmented database searches showed up to 30% improvement in fold coverage for over 74% of the folds, with 52 folds achieving all theoretically possible connections. Although sequences could not be designed between some families, the availability of designed sequences between other families within the fold established the sequence continuum to demonstrate 373 difficult relationships. Ultimately, as a practical and realistic extension, we demonstrate that such protein-like sequences can be ``plugged-into'' routine and generic sequence database searches to empower not only remote homology detection but also fold recognition. Our richly statistically supported findings show that complementary searches in both databases will increase the effectiveness of sequence-based searches in recognizing all homologues sharing a common fold. (C) 2013 Elsevier Ltd. All rights reserved
    corecore