25 research outputs found
Characterization and Antibacterial Evaluation of Biodegradable MannoseâConjugated FeâMILâ88NH2 Composites Containing Vancomycin against MethicillinâResistant Staphylococcus aureus Strains
The emergence of bacterial resistance has increased the economic burden of infectious diseases dramatically during the previous few decades. Multidrug resistance (MDR) is difficult to cure in both Gramânegative and positive bacteria and is often incurable with traditional and broad-range antibiotics. Therefore, developing techniques to increase the antibacterial activity of therapeutic
drugs is essential. Metalâorganic frameworks (MOFs) are extremely versatile hybrid materials made of metal ions coupled via organic bridging ligands. They have been widely used as an excellent vehicle for drug delivery due to their low toxicity, biodegradability, and structural stability upon loading and functionalization. The present study focused on the synthesis of mannose (MNS)âcoated MOFs with enhanced surface contact with S. aureus cells. The MNS coating on the surface of MOFs enhances their adherence to bacteria by binding to lectins present on the bacterial cell, resulting in improved VCM cellular penetration and activity against resistant bacteria. Various techniques, including atomic force microscopy, DLS, TGA, FTâIR, and DSC, were employed to analyze
MNSâcoated MOFs. They were also evaluated for their efficacy against resistant S. aureus. The results indicated that when VCM was loaded into MNSâcoated MOFs, their bactericidal activity rose dramatically, resulting in the greater suppression of resistant S. aureus. AFM investigation of S. aureus strains demonstrated total morphological distortion after treatment with MNSâcoated drug-loaded MOFs. The results of this work suggest that MNSâcoated MOFs may be effective in reversing bacterial resistance to VCM and open new pathways for improving antibiotic therapy for diseases associated with MDR
GC-MS Analysis and Biomedical Therapy of Oil from n-Hexane Fraction of Scutellaria edelbergii Rech. f.: In Vitro, In Vivo, and In Silico Approach
The current study aimed to explore the crude oils obtained from the n-hexane fraction of Scutellaria edelbergii and further analyzed, for the first time, for their chemical composition, in vitro antibacterial, antifungal, antioxidant, antidiabetic, and in vivo anti-inflammatory, and analgesic activities. For the phytochemical composition, the oils proceeded to gas chromatography-mass spectrometry (GC-MS) analysis and from the resultant chromatogram, 42 bioactive constituents were identified. Among them, the major components were linoleic acid ethyl ester (19.67%) followed by ethyl oleate (18.45%), linolenic acid methyl ester (11.67%), and palmitic acid ethyl ester (11.01%). Tetrazolium 96-well plate MTT assay and agar-well diffusion methods were used to evaluate the isolated oil for its minimum inhibitory concentrations (MIC), minimum bactericidal concentration (MBC), half-maximal inhibitory concentrations (IC50), and zone of inhibitions that could determine the potential antimicrobial efficacy’s. Substantial antibacterial activities were observed against the clinical isolates comprising of three Gram-negative bacteria, viz., Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa, and one Gram-positive bacterial strain, Enterococcus faecalis. The oils were also effective against Candida albicans and Fusarium oxysporum when evaluated for their antifungal potential. Moreover, significant antioxidant potential with IC50 values of 136.4 and 161.5 µg/mL for extracted oil was evaluated through DPPH (1,1-Diphenyl-2-picryl-hydrazyl) and ABTS assays compared with standard ascorbic acid where the IC50 values were 44.49 and 67.78 µg/mL, respectively, against the tested free radicals. The oils was also potent, inhibiting the α-glucosidase (IC50 5.45 ± 0.42 µg/mL) enzyme compared to the standard. Anti-glucosidase potential was visualized through molecular docking simulations where ten compounds of the oil were found to be the leading inhibitors of the selected enzyme based on interactions, binding energy, and binding affinity. The oil was found to be an effective anti-inflammatory (61%) agent compared with diclofenac sodium (70.92%) via the carrageenan-induced assay. An appreciable (48.28%) analgesic activity in correlation with the standard aspirin was observed through the acetic acid-induced writhing bioassay. The oil from the n-hexane fraction of S. edelbergii contained valuable bioactive constituents that can act as in vitro biological and in vivo pharmacological agents. However, further studies are needed to uncover individual responsible compounds of the observed biological potentials which would be helpful in devising novel drugs
Bioactive Compounds from Endophytic Bacteria Bacillus subtilis Strain EP1 with Their Antibacterial Activities
Endophytic bacteria boost host plant defense and growth by producing vital compounds. In the current study, a bacterial strain was isolated from the Boswellia sacra plant and identified as Bacillus subtilis strain EP1 (accession number: MT256301) through 16S RNA gene sequencing. From the identified bacteria, four compounds—1 (4-(4-cinnamoyloxy)phenyl)butanoic acid), 2 (cyclo-(L-Pro-D-Tyr)), 3 (cyclo-(L-Val-L-Phe)), and 4 (cyclo-(L-Pro-L-Val))—were isolated and characterized by 1D and 2D NMR and mass spectroscopy. Moreover, antibacterial activity and beta-lactam-producing gene inhibition (δ-(l-α-aminoadipyl)-l-cysteinyl-d-valine synthetase (ACVS) and aminoadipate aminotransferase (AADAT)) assays were performed. Significant antibacterial activity was observed against the human pathogenic bacterial strains (E. coli) by compound 4 with a 13 ± 0.7 mm zone of inhibition (ZOI), followed by compound 1 having an 11 ± 0.7 mm ZOI. In contrast, the least antibacterial activity among the tested samples was offered by compound 2 with a 10 ± 0.9 mm ZOI compared to the standard (26 ± 1.2 mm). Similarly, the molecular analysis of beta-lactam inhibition determined that compounds 3 and 4 inhibited the two genes (2- to 4-fold) in the beta-lactam biosynthesis (ACVS and AADAT) pathway. From these results, it can be concluded that future research on these compounds could lead to the inhibition of antibiotic-resistant pathogenic bacterial strains
Scutellaria petiolata Hemsl. ex Lace & Prain (Lamiaceae).: A New Insight in Biomedical Therapies
The recent investigation was designed to explore Scutellaria petiolata Hemsl. ex Lace & Prain (Lamiaceae) whole plant in various extracts (methanol (SPM), dichloromethane (SPDCM), n-Hexane (SPNH), and aqueous (SPAQ) for a phytochemicals assessment, ESI-LC-MS chemical analysis, in vitro antimicrobials, and antioxidants and in vivo anti-inflammatory and analgesic potential. The qualitative detection shows that all the representative groups were present in the analyzed samples. The examined samples display the greatest amount of total flavonoid content (TFC, 78.2 ± 0.22 mg QE/mg) and total phenolic contents (TPC, 66.2 ± 0.33 mg GAE/g) in the SPM extract. The SPM extract proceeded to the ESI-LC-MS to identify the chemical constituents that presented nineteen bioactive ingredients, depicted for the first time from S. petiolata mainly contributed by flavonoids. The analyzed samples produced considerable capability to defy the microbes. The SPM extract was observed effective and offered an appreciable zone of inhibition (ZOI), 17.8 ± 0.04 mm against the bacterial strain Salmonellatyphi and 18.8 ± 0.04 mm against Klebsiella pneumonia. Moreover, the SPM extract also exhibited 19.4 ± 0.01 mm against the bacterial strains Bacillus atrophaeus and 18.8 ± 0.04 mm against Bacillus subtilis in comparison to the standard levofloxacin (Gram-negative) and erythromycin (Gram-positive) bacterial strains that displayed 23.6 ± 0.02 mm and 23.2 ± 0.05 mm ZOI, correspondingly. In addition to that, the SPD fraction was noticed efficiently against the fungal strains used with ZOI 19.07 ± 0.02 mm against Aspergillus parasiticus and 18.87 ± 0.04 mm against the Aspergillus niger as equated to the standard with 21.5 ± 0.02 mm ZOI. In the DPPH (2,2-diphenyl-1-picrylhydrazyl) analysis, the SPM extract had the maximum scavenging capacity with IC50 of 78.75 ± 0.19 µg/mL succeeded by the SPDCM fraction with an IC50 of 140.50 ± 0.20 µg/mL free radicals scavenging potential. Through the ABTS (2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) assay, the similar extract (SPM) presented an IC50 = 85.91 ± 0.24 µg/mL followed by the SPDCM fractions with IC50 = 182.50 ± 0.35 µg/mL, and n-Hexane fractions were reported to be the least active between the tested samples in comparison to ascorbic acid of IC50 = 67.14 ± 0.25 µg/mL for DPPH and IC50 of 69.96 ± 0.18 µg/mL for ABTS assay. In the in vivo activities, the SPM extract was the most effective with 55.14% inhibition as compared to diclofenac sodium with 70.58% inhibition against animals. The same SPM crude extract with 50.88% inhibition had the most analgesic efficacy as compared to aspirin having 62.19% inhibition. Hence, it was assumed from our results that all the tested samples, especially the SPM and SPDCM extracts, have significant capabilities for the investigated activities that could be due to the presence of the bioactive compounds. Further research is needed to isolate the responsible chemical constituents to produce innovative medications
Nanomedicine-Based Delivery Strategies for Breast Cancer Treatment and Management
Breast cancer is one of the most common types of cancer among women globally. It is caused by mutations in the estrogen/progesterone receptors and conventional treatment methods are commonly utilized. About 70–80 percent of individuals with the early-stage non-metastatic disease may be cured. Conventional treatment is far less than the optimal ratio, as demonstrated through the high mortality rate of women with this cancer. However, conventional treatment methods like surgery, radiotherapy, and chemotherapy are not as effective as expected and lead to concerns about low bioavailability, low cellular uptake, emerging resistance, and adverse toxicities. A nanomedicine-based approach is a promising alternative for breast cancer treatment. The present era is witnessing rapid advancements in nanomedicine as a platform for investigating novel therapeutic applications and modern intelligent healthcare management strategies. This paper focuses on nanomedicine-based therapeutic interventions that are becoming more widely accepted for improving treatment effectiveness and reducing undesired side effects in breast cancer patients. By evaluating the state-of-the-art tools and taking the challenges involved into consideration, various aspects of the proposed nano-enabled therapeutic approaches have been discussed in this review
Potential Role of Natural Products to Combat Radiotherapy and Their Future Perspectives
Cancer is the second leading cause of death in the world. Chemotherapy and radiotherapy (RT) are the common cancer treatments. In addition to these limitations, the development of adverse effects from chemotherapy and RT reduces the quality of life for cancer patients. Cellular radiosensitivity, or the ability to resist and overcome cell damage caused by ionizing radiation (IR), is directly related to cancer cellsâ response to RT. Therefore, radiobiological research is emphasizing chemical compounds âradiosensitization of cancer cells so that they are more reactive in the IR spectrum. Recent years researchers have seen an increase in interest in natural products that have antitumor effects with minimal side effects. Natural products, on the other hand, are easy to recover and therefore less expensive. There have been several scientific studies done based on these compounds that have tested their ability in vitro and in vivo to induce tumor radiosensitization. The role of natural products in RT, as well as their usefulness and potential applications, is the goal of this current review
Quality Assessment of Groundwater Based on Geochemical Modelling and Water Quality Index (WQI)
Potable groundwater contamination through arsenic (As) is a common environmental problem in many developing countries, including Pakistan, with significant human health risk reports. The current research was conducted in District Nankana Sahib, which is a major industrial site in Punjab, Pakistan. According to the Punjab Directorate of Industries in Pakistan, there are more than a thousand industries in this area. These industries produce a lot of waste and effluent, which contaminate the environment with harmful and toxic materials. Continuous irrigation with industrial effluent and sewage sludge may make groundwater sources vulnerable. Therefore, this research was aimed as assessing the hydrochemical profile of groundwater concerning As contamination in the study area using sixty-seven groundwater samples. Multivariate statistical analysis, graphical plots, geochemical modeling, and the water quality index (WQI) were applied to investigate the hydrochemistry of the research area. The outcomes of the WQI revealed that 43% of the samples were of poor quality and not fit for human consumption. About 28% of the groundwater samples showed high arsenic contamination beyond the permitted limit of the World Health Organization (WHO). The piper plot identified three distinct types of water in the research area: calcium, chloride, and calcium-chloride types. The Gibbs diagram illustrated that rockâwater interaction influenced the hydrochemistry. Terrigenous sedimentary rocks, such as stream deposits, flood plain deposits, and detrital sedimentary rocks, among other types of sedimentary rocks covered most part the study area. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) indicated that the arsenic in groundwater exhibited a significant positive correlation for pH, Fe and As. Health risk assessments indicated a hazard quotient (HQ) greater than 1, indicating a 28% contribution showing that groundwater ingestion is highly toxic to the local habitats. The results of this study further help in managing future sustainable groundwater management approaches in the Nankana District, Punjab, Pakistan
Biological Synthesis of Silver Nanoparticles by Amaryllis vittata (L.) Herit: From Antimicrobial to Biomedical Applications
The current study sought to synthesize silver nanoparticles (AgNPs) from Amaryllis vittata (L.) leaf and bulb extracts in order to determine their biological significance and use the toxic plants for human health benefits. The formation of silver nanoparticles was detected by a change in color from whitish to brown for bulb-AgNPs and from light green to dark brown for leaf-AgNPs. For the optimization of silver nanoparticles, various experimental physicochemical parameters such as pH, temperature, and salt were determined. UV-vis spectroscopy, Fourier transform infrared spectroscopy, X-ray dispersion spectroscopy, scanning electron microscopy, and energy dispersion spectroscopy analysis were used to characterize nanoparticles. Despite the fact that flavonoids in plant extracts were implicated in the reduction and capping procedure, the prepared nanoparticles demonstrated maximum absorbency between 400 and 500 nm. SEM analysis confirmed the preparation of monodispersed spherical crystalline particles with fcc structure. The bioinspired nanoparticles were found to show effective insecticidal activity against Tribolium castaneum and phytotoxic activity against Lemna aequincotialis. In comparison to plant extracts alone, the tested fabricated nanoparticles showed significant potential to scavenge free radicals and relieve pain. Antibacterial testing against human pathogenic strains, i.e., Escherichia coli and Pseudomonas aureginosa, and antifungal testing against Aspergillus niger revealed the significant potential for microbe resistance using AgNPs. As a result of the findings, the tested silver nanoparticles demonstrated promising potential for developing new and effective pharmacological and agricultural medications. Furthermore, the effects of biogenic AgNPs on an in vitro culture of Solanum tuberosum L. plants were investigated, and the findings indicated that bulb-AgNPs and leaf-AgNPs produced biomass and induced antioxidants via their active constituents. As a result, bulb-AgNPs and leaf-AgNPs may be recommended for use in Solanum tuberosum L. tissue culture for biomass fabrication and metabolic induction
Potentiality of Nanoenzymes for Cancer Treatment and Other Diseases: Current Status and Future Challenges
Studies from past years have observed various enzymes that are artificial, which are issued to mimic naturally occurring enzymes based on their function and structure. The nanozymes possess nanomaterials that resemble natural enzymes and are considered an innovative class. This innovative class has achieved a brilliant response from various developments and researchers owing to this unique property. In this regard, numerous nanomaterials are inspected as natural enzyme mimics for multiple types of applications, such as imaging, water treatment, therapeutics, and sensing. Nanozymes have nanomaterial properties occurring with an inheritance that provides a single substitute and multiple platforms. Nanozymes can be controlled remotely via stimuli including heat, light, magnetic field, and ultrasound. Collectively, these all can be used to increase the therapeutic as well as diagnostic efficacies. These nanozymes have major biomedical applications including cancer therapy and diagnosis, medical diagnostics, and bio sensing. We summarized and emphasized the latest progress of nanozymes, including their biomedical mechanisms and applications involving synergistic and remote control nanozymes. Finally, we cover the challenges and limitations of further improving therapeutic applications and provide a future direction for using engineered nanozymes with enhanced biomedical and diagnostic applications
Identification of α-Glucosidase Inhibitors from Scutellaria edelbergii: ESI-LC-MS and Computational Approach
The recent study investigated the in vitro anti-diabetic impact of the crude extract (MeOH) and subfractions ethyl acetate (EtOAc); chloroform; n-butanol; n-hexane; and aqueous fraction of S. edelbergii and processed the active EtOAc fraction for the identification of chemical constituents for the first time via ESI-LC-MS analysis through positive ionization mode (PIM) and negative ionization mode (NIM); the identified compounds were further validated through computational analysis via standard approaches. The crude extract and subfractions presented appreciable activity against the α-glucosidase inhibitory assay. However, the EtOAc fraction with IC50 = 0.14 ± 0.06 µg/mL revealed the maximum potential among the fractions used, followed by the MeOH and n-hexane extract with IC50 = 1.47 ± 0.14 and 2.18 ± 0.30 µg/mL, respectively. Moreover, the acarbose showed an IC50 = 377.26 ± 1.20 µg/ mL whereas the least inhibition was observed for the chloroform fraction, with an IC50 = 23.97 ± 0.14 µg/mL. Due to the significance of the EtOAc fraction, when profiled for its chemical constituents, it presented 16 compounds among which the flavonoid class was dominant, and offered eight compounds, of which six were identified in NIM, and two compounds in PIM. Moreover, five terpenoids were identified—three and two in NIM and PIM, respectively—as well as two alkaloids, both of which were detected in PIM. The EtOAc fraction also contained one phenol that was noticed in PIM. The detected flavonoids, terpenoids, alkaloids, and phenols are well-known for their diverse biomedical applications. The potent EtOAc fraction was submitted to computational analysis for further validation of α-glucosidase significance to profile the responsible compounds. The pharmacokinetic estimations and protein-ligand molecular docking results with the support of molecular dynamic simulation trajectories at 100 ns suggested that two bioactive compounds—dihydrocatalpol and leucosceptoside A—from the EtOAc fraction presented excellent drug-like properties and stable conformations; hence, these bioactive compounds could be potential inhibitors of alpha-glucosidase enzyme based on intermolecular interactions with significant residues, docking score, and binding free energy estimation. The stated findings reflect that S. edelbergii is a rich source of bioactive compounds offering potential cures for diabetes mellitus; in particular, dihydrocatalpol and leucosceptoside A could be excellent therapeutic options for the progress of novel drugs to overcome diabetes mellitus