9 research outputs found

    Application of Biosorption for Removal of Heavy Metals from Wastewater

    Get PDF
    Fresh water accounts for 3% of water resources on the Earth. Human and industrial activities produce and discharge wastes containing heavy metals into the water resources making them unavailable and threatening human health and the ecosystem. Conventional methods for the removal of metal ions such as chemical precipitation and membrane filtration are extremely expensive when treating large amounts of water, inefficient at low concentrations of metal (incomplete metal removal) and generate large quantities of sludge and other toxic products that require careful disposal. Biosorption and bioaccumulation are ecofriendly alternatives. These alternative methods have advantages over conventional methods. Abundant natural materials like microbial biomass, agro-wastes, and industrial byproducts have been suggested as potential biosorbents for heavy metal removal due to the presence of metal-binding functional groups. Biosorption is influenced by various process parameters such as pH, temperature, initial concentration of the metal ions, biosorbent dose, and speed of agitation. Also, the biomass can be modified by physical and chemical treatment before use. The process can be made economical by regenerating and reusing the biosorbent after removing the heavy metals. Various bioreactors can be used in biosorption for the removal of metal ions from large volumes of water or effluents. The recent developments and the future scope for biosorption as a wastewater treatment option are discussed

    Response surface methodology-artificial neural network based optimization and strain improvement of cellulase production by Streptomyces sp.

    Get PDF
    ABSTRACT Thirty seven different colonies were isolated from decomposing logs of textile industries. From among these, a thermotolerant, grampositive, filamentous soil bacteria Streptomyces durhamensis vs15 was selected and screened for cellulase production. The strain showed clear zone formation on CMC agar plate after Gram’s iodine staining.  Streptomyces durhamensis vs15 was further confirmed for cellulase production by estimating the reducing sugars through dinitrosalicylic acid (DNS) method. The activity was enhanced by sequential mutagenesis using three mutagens of ultraviolet irradiation (UV), N methyl-N’-nitro-N-nitrosoguanidine (NTG) and Ethyl methane sulphonate (EMS). After mutagenesis, the cellulase activity of GC23 (mutant) was improved to 1.86 fold compared to the wild strain (vs15). Optimal conditions for the production of cellulase by the GC 23 strain were evaluated using Response Surface Methodology (RSM) and Artificial Neural Network (ANN). Effect of pH, temperature, duration of incubation, , and substrate concentration on cellulase production were evaluated. Optimal conditions for the production of cellulase enzyme using Carboxy Methyl Cellulase as a substrate are 55 oC of temperature, pH of 5.0 and incubation for 40 h. The cellulase activity of the mutant Streptomyces durhamensis GC23 was further optimised to 2 fold of the activity of the wild type by RSM and ANN

    Comparative analysis of structural variations due to genome shuffling of Bacillus subtilis VS15 for improved cellulase production

    Get PDF
    Cellulose is one of the most abundant and renewable biomass products used for the production of bioethanol. Cellulose can be efficiently hydrolyzed by Bacillus subtilis VS15, a strain isolate obtained from decomposing logs. A genome shuffling approach was implemented to improve the cellulase activity of Bacillus subtilis VS15. Mutant strains were created using ethyl methyl sulfonate (EMS), N-Methyl-N′ nitro-N-nitrosoguanidine (NTG), and ultraviolet light (UV) followed by recursive protoplast fusion. After two rounds of shuffling, the mutants Gb2, Gc8, and Gd7 were produced that had an increase in cellulase activity of 128%, 148%, and 167%, respectively, in comparison to the wild type VS15. The genetic diversity of the shuffled strain Gd7 and wild type VS15 was compared at whole genome level. Genomic-level comparisons identified a set of eight genes, consisting of cellulase and regulatory genes, of interest for further analyses. Various genes were identified with insertions and deletions that may be involved in improved celluase production in Gd7.. Strain Gd7 maintained the capability of hydrolyzing wheatbran to glucose and converting glucose to ethanol by fermentation with Saccharomyces cerevisiae of the wild type VS17. This ability was further confirmed by the acidified potassium dichromate (K2Cr2O7) method

    Antimicrobial Potential of Streptomyces spp. Isolated from the Rift Valley Regions of Ethiopia

    No full text
    The study was undertaken to isolate, screen, and identify actinomycetes with antimicrobial metabolites. Twenty-one composite soil samples were randomly collected from various unique agroecological niches in the Rift Valley of Ethiopia. The soil samples were serially diluted and spread on starch casein agar medium supplemented with 50 μg/ml cycloheximide and 25 μg/ml nalidixic acid. Two hundred and forty-nine (249) actinomycetes cultures were isolated and screened by cross streaking against various human pathogens. Twenty-four isolates with pronounced antimicrobial activity were selected for identification and further screening. Among the isolates, 172 (69.1%) showed antimicrobial activities against tested pathogens. The inhibition zone of the isolates ranged from 5 ± 0.31 to >40 mm during primary screening. The antimicrobial activity of the crude extracts of promising isolates showed a statistically significant difference P<0.05 between them and the control. The isolates RVE129 and RVE217 showed the maximum zone of inhibition at 27 ± 0.6 mm and 26 ± 0.6 mm, respectively, against S. aureus, and the results were higher than the standard drug streptomycin (25 ± 0.58 mm). The inhibition zone of crude extracts from RVE129 was at the maximum of 22 ± 0.0 mm against P. aeruginosa, almost comparable to the standard drug streptomycin (24 ± 0.58 mm). Crude extract from the isolates RVE129 and RVE187 showed higher inhibition zones of 22 ± 0.6 mm and 16 ± 0.33 mm against A. niger ATCC10535, which, however, were smaller than those obtained with the standard drug amphotericin B (29 ± 0.6 mm). Twenty-four actinomycete strains with remarkable bioactivity were characterized using various cultural, morphological, physiological, and biochemical characteristics and assigned under the genus Streptomycetes. The finding of the current study indicates that Streptomyces sp. isolated from the Rift Valley of Ethiopia was found to possess a broad spectrum of bioactivity against a range of human pathogens

    Purification and Characterization of Bioactive Metabolite from Streptomyces monomycini RVE129 Derived from the Rift Valley Soil of Hawassa, Ethiopia

    No full text
    Streptomyces species have produced a variety of bioactive secondary metabolites with intriguing antimicrobial and anticancer properties. In this study, the bioactive compound obtained from the potent strain RVE129 was purified and characterized. Its bioactivity against various pathogens and its cytotoxicity toward the human cervical cancer (HeLa) cell were also examined. The strain was previously isolated from unexplored areas of the rift valley soil of Hawassa (Ethiopia) and identified by phenotypic characteristics and complete sequencing of the 16S rRNA gene and found to be closely related to Streptomyces monomycini strain NRRL B-24309 (99.65%); accession no. (ON786620). The active fraction undergoes bioassay-guided purification using the TLC method after being extracted by ethyl acetate. Then, it was subjected to physicochemical and structural characteristics using UV–Vis, FTIR, and NMR spectroscopic methods. A minimum inhibitory concentration of the purified antibiotic was achieved by the broth microdilution method. The cytotoxicity of HeLa cells was determined using the 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The acquired data from spectroscopic studies was compared with that of the reported natural compounds in data bases and found to be the known antibiotic, setamycin. The antibiotic (RVE-02) showed a broad spectrum of bioactivity against both Gram-positive and Gram-negative bacteria, with MIC values that ranged from 1.97 to 125 μg/ml. The bioactivity results also demonstrated antiproliferation and morphological change in HeLa cells with an IC50 value of 24.30μg/ml of antibiotic. The antibiotic, obtained from S. monomycini RVE129, could be a potential candidate to combat pathogens including drug-resistant S. aureus. Further, the effect on HeLa cells suggests that it could be a prominent cancer chemotherapeutic agent

    Characterization of Exopolysaccharide Produced by Streptococcus thermophilus CC30

    No full text
    An exopolysaccharide (EPS) producing strain CC30 was isolated from raw milk and identified as Streptococcus thermophilus with morphological and 16S sequencing analysis. The strain was shown to produce 1.95 g/L of EPS when grown in skim milk lactose medium at 30°C by increasing the viscosity of the medium. The EPS was isolated and purified, and it was shown to consist of glucose and galactose in 1 : 1 ratio, with molecular weights ranging from 58 to 180 kDa. FTIR spectroscopy indicated the EPS to have amide, hydroxyl, and carboxyl groups. Under Atomic Force Microscopy, EPS showed spike-like lumps of EPS. Scanning Electron Microscopy (SEM) studies showed that it had irregular lumps with a coarse surface. The EPS displayed pseudoplastic nature. Thermogravimetric analysis (TGA) reported a degradation temperature of 110.84°C. The purified EPS exhibited reducing activity, hydrogen peroxide radical scavenging activity, and emulsification activity. The results of the present study indicated that EPS producing Streptococcus thermophilus could serve as a promising candidate for further exploitation in food industry

    Effect of pretreatment of Bacillus subtilis biomass on biosorption and its real time application

    No full text
    The research study investigated the biosorption behavior of Pb(II) ions by treated and untreated biomass of B. subtilis. At initial biosorption conditions, the biosorption efficiency was found to be 36.75%. At the optimized experimental conditions, control biomass showed maximum biosorption efficiency of 58.04% where the biomass was treated with different chemicals. The biomass treated with formaldehyde showed the highest efficiency of 80.9% which was further optimized and attained maximum efficiency of 89.8% for Pb(II) ions. SEM (Scanning Electron Microscope) and EDX (Energy dispersive X- ray) analysis evaluates the structural and elemental changes that occurred as a result of biosorption. Functional groups that are involved in biosorption were revealed by FTIR (Fourier Transform Infrared spectroscopy). Kinetic data showed the best fit with the pseudo second-order model. Effective removal of lead ions from industrial contaminated water sources by pretreatment biomass of B. subtilis elucidates its potential use as biosorbent for metal remediation
    corecore