12 research outputs found

    The Reinforcing Therapist Performance (RTP) experiment: Study protocol for a cluster randomized trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rewarding provider performance has been recommended by the Institute of Medicine as an approach to improve the quality of treatment, yet little empirical research currently exists that has examined the effectiveness and cost-effectiveness of such approaches. The aim of this study is to test the effectiveness and cost-effectiveness of providing monetary incentives directly to therapists as a method to improve substance abuse treatment service delivery and subsequent client treatment outcomes.</p> <p>Design</p> <p>Using a cluster randomized design, substance abuse treatment therapists from across 29 sites were assigned by site to either an implementation as usual (IAU) or pay-for-performance (P4P) condition.</p> <p>Participants</p> <p>Substance abuse treatment therapists participating in a large dissemination and implementation initiative funded by the Center for Substance Abuse Treatment.</p> <p>Intervention</p> <p>Therapists in both conditions received comprehensive training and ongoing monitoring, coaching, and feedback. However, those in the P4P condition also were given the opportunity to earn monetary incentives for achieving two sets of measurable behaviors related to quality implementation of the treatment.</p> <p>Outcomes</p> <p>Effectiveness outcomes will focus on the impact of the monetary incentives to increase the proportion of adolescents who receive a targeted threshold level of treatment, months that therapists demonstrate monthly competency, and adolescents who are in recovery following treatment. Similarly, cost-effectiveness outcomes will focus on cost per adolescent receiving targeted threshold level of treatment, cost per month of demonstrated competence, and cost per adolescent in recovery.</p> <p>Trial Registration</p> <p>Trial Registration Number: NCT01016704</p

    Evaluation of Carbohydrates for Infusion-Therapy in Obstetrics

    No full text

    Blood glycogen content in pregnant women

    No full text

    Host plant shifts affect a major defense enzyme in Chrysomela lapponica

    No full text
    Chrysomelid leaf beetles use chemical defenses to overcome predatory attack and microbial infestation. Larvae of Chrysomela lapponica that feed on willow sequester plant-derived salicin and other leaf alcohol glucosides, which are modified in their defensive glands to bioactive compounds. Salicin is converted into salicylaldehyde by a consecutive action of a β-glucosidase and salicyl alcohol oxidase (SAO). The other leaf alcohol glucosides are not oxidized, but are deglucosylated and esterified with isobutyric- and 2-methylbutyric acid. Like some other closely related Chrysomela species, certain populations of C. lapponica shift host plants from willow to salicin-free birch. The only striking difference between willow feeders and birch feeders in terms of chemical defense is the lack of salicylaldehyde formation. To clarify the impact of host plant shifts on SAO activity, we identified and compared this enzyme by cloning, expression, and functional testing in a willow-feeding and birch-feeding population of C. lapponica. Although the birch feeders still demonstrated defensive gland-specific expression, their SAO mRNA levels were 1,000-fold lower, and the SAO enzyme was nonfunctional. Obviously, the loss of catalytic function of the SAO of birch-adapted larvae is fixed at the transcriptional, translational, and enzyme levels, thus avoiding costly expression of a highly abundant protein that is not required in the birch feeders

    HMG-CoA reductase inhibitors and the malignant cell: the statin family of drugs as triggers of tumor-specific apoptosis

    Full text link
    The statin family of drugs target HMG-CoA reductase, the rate-limiting enzyme of the mevalonate pathway, and have been used successfully in the treatment of hypercholesterolemia for the past 15 years. Experimental evidence suggests this key biochemical pathway holds an important role in the carcinogenic process. Moreover, statin administration in vivo can provide an oncoprotective effect. Indeed, in vitro studies have shown the statins can trigger cells of certain tumor types, such as acute myelogenous leukemia, to undergo apoptosis in a sensitive and specific manner. Mechanistic studies show bcl-2 expression is down-regulated in transformed cells undergoing apoptosis in response to statin exposure. In addition, the apoptotic response is in part due to the depletion of the downstream product geranylgeranyl pyrophosphate, but not farnesyl pyrophosphate or other products of the mevalonate pathway including cholesterol. Clinically, preliminary phase I clinical trials have shown the achievable plasma concentration corresponds to the dose range that can trigger apoptosis of tumor types in vitro. Moreover, little toxicity was evident in vivo even at high concentrations. Clearly, additional clinical trials are warranted to further assess the safety and efficacy of statins as novel and immediately available anti-cancer agents. In this article, the experimental evidence supporting a role for the statin family of drugs to this new application will be reviewed
    corecore